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Abstract 

 The United States Air Force uses the XMX/2L-MIL (XMX) high volume air 

sampler to collect samples for biological analysis.  The XMX uses a virtual impactor to 

concentrate particles 1.0 to 10 µm in size into a secondary flow prior to sample collection 

using a liquid impinger in a collection tube.  There are no known published studies 

regarding virtual impactor inter-instrument variability, effect of reducing the secondary 

flow on particle concentration, or capture and retention efficiency (CRE) of particles in 

the collection media performance characteristics when using the XMX.  These 

performance characteristics were evaluated by lofting test aerosols of Arizona Road Dust 

or fluorescent polystyrene latex (FPSL) spheres into a 14 m
3
 test chamber, measuring the 

chamber and post-virtual impactor particle concentrations using aerodynamic particle 

sizers, and measuring the concentration of FPSL spheres captured and retained in the 

collection media using a fluorometer.  Notable findings include detection of significant 

inter-instrument virtual impactor variability, significant difference in particle 

concentration at reduced secondary flow, and significant differences in CRE due to 

particle size and secondary flow.   This research demonstrates that when using an XMX 

limit of detection precision is suspect and the importance of collecting and analyzing 

multiple samples for improved risk assessment. 
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EVALUATION OF XMX/2L-MIL VIRTUAL IMPACTOR PERFORMANCE AND 

CAPTURE AND RETENTION OF AEROSOL PARTICLES IN TWO DIFFERENT 

COLLECTION MEDIA 

 

 

I. Introduction 

 

Motivating Factors for Biological Agent Sampling 

The United States (US) faces many national security threats, both in the homeland 

and abroad.  The US Air Force (AF) is a vital asset of the federal government in 

protecting and defending the nation from all threats, foreign and domestic.  Since the US 

possesses the most dominant, experienced, and best equipped military force, most 

potential nation state adversaries are loath to directly challenge and confront the US in a 

conventional war (National Research Council, 2007).  Additionally, there are many 

terrorist organizations that wish to harm US citizens and damage national assets in a 

manner that engenders fear or panic.  The intention of antagonists is to intimidate the US, 

using terroristic tactics and threats, such that the federal government will alter national 

policies or goals the antagonists find objectionable.  As conventional military weapons 

are fairly well understood by members of the general public in terms of the basic nature 

of most armaments, direct causes and types of injuries, and typical methods of avoidance 

and protective measures, unconventional weapons are considered to be the modern 

terrorists’ most desired weapon of choice when the intent of the attack is to generate fear, 

panic, hysteria, or alter the policy of the federal government (Hodge, 2002).  
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Additionally, unconventional weapons offer both nation state and terrorist organizations 

the capability to engage the US in asymmetric, rather than direct battlefield, conflict.  

There are nominally four types of unconventional weapons: chemical, biological, 

radiological, and nuclear.  This thesis is focused solely on biological agents, whether used 

maliciously or simply appearing via natural occurrence. 

There are notable characteristics of biological agents that make them attractive to 

adversaries to use as weapons against the US.  Biological agents can be cultured or 

produced in significant quantities using dual-use equipment and facilities, which can 

make a biological agent production facility difficult to identify or prove it is engaged in a 

biological weapons program (Alibek, 1999).  Many biological agents are endemic 

disease-causing agents, which may make it very difficult to distinguish between 

naturally-occurring and maliciously introduced epidemics.  Biological agents are ideally 

suited for covert attacks, with the potential for a significant time period in between the 

initial use of a biological agent and recognition of the ensuing epidemic it caused 

(Alibek, 1999).  The use of biological weapons would most likely lead to widespread 

panic, disruption, and extraordinary costs in medical resources and decontamination 

efforts (Bush, 2010). 

Due to the aforementioned likely characteristics of potential adversaries of the 

US, the appealing aspects of biological agents as weapons, and the potential disturbance 

resulting from civilian fear, panic, and use of medical resources, the federal government 

is highly motivated to protect and defend the US from the malicious use of biological 

agents.  In addition, there also exists the risk of an event, outbreak, or pandemic of a 

naturally-occurring biological agent not associated with any malicious activity.  In recent 



 

3 

history, the federal government has acted in response to events such as the Hanta virus 

outbreak (Simonsen, et al., 1995), Avian Influenza pandemic (Schofield, et al., 2005), 

Sever Acute Respiratory Syndrome (SARS) epidemic (Ksiazek, et al., 2003), recurring 

Adenovirus outbreaks (Echavarria, et al., 2000), H1N1 Swine influenza pandemic 

(Smith, et al., 2009), and the Post 9/11 Anthrax letter attacks (Canter, 2005).  Critical to 

protecting and defending against biological threats is the ability to detect and identify 

biological agents.  Collecting and analyzing biological samples is the most fundamental 

requirement to detect and identify biological agents.   

 

Basic Model of Airborne Biological Agent Exposure and Impact 

The fundamental etiology of biological infection is perhaps best exemplified by 

the triad model of Host-Agent-Environment (HAE).  Simply stated, the HAE model 

conveys that a biological agent infects and lives in a host and can be subsequently 

transmitted to another host by direct contact or indirectly through the environment 

(Vaccari, et al., 2006).  There are two general disease conditions for an agent embedded 

in the HAE model: prepathogenesis and pathogenesis.  Prepathogenesis is the period 

when an agent is either in the environment prior to exposure of a host or, subsequently, in 

a host as a result of exposure and adapting to the environment presented by the host.  

Pathogenesis is the period after which a host has become infected due to adaption and 

establishment of the agent in the host.  If the immune response of the host prevents the 

agent from adapting and establishing itself in the host, pathogenesis is averted and the 

host does not become infected by the agent (Vaccari, et al., 2006). 
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There are many potential pathways of exposure by which a host can become 

infected by an agent, with the most common being ingestion, absorption through the skin, 

contact with wounds on the skin or mucous membranes, and inhalation.  While airborne 

biological agents can lead to host infection by all the aforementioned pathways, the most 

relevant pathway of concern for airborne agents is inhalation.  Inhalational exposure 

provides nearly ideal conditions for a biological agent to infect a host as one must breathe 

air to survive, the presence of aerosolized biological agent is not readily recognized 

absent air sampling and analysis, and depending upon the size of the carrier aerosol 

particle, the biological agent can penetrate deeply into the respiratory system of the host.  

Once inhaled into the host, the biological agent can deposit into the incubator-like 

environment of the respiratory system or potentially cross the air-blood barrier in the 

alveolar region and enter the circulatory system of the host.  Once having deposited in the 

respiratory system or invaded the circulatory system, barring sufficient immunological 

response, a biological agent can easily advance from the prepathogenesis to the 

pathogenesis stage and give rise to full infection and symptomatic manifestation of 

disease. 

 

Collection of Airborne Biological Agents 

There are two successive processes involved in detecting a biological agent: 

collecting a sample and analyzing the sample.  A sample is normally collected from a 

single source media.  The basic source media from which a sample is collected are air, 

water, soil, bulk material, plant, animal, or human.  This work is focused on air as the 
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source media for biological agents and, particularly, on the process of collecting a sample 

from ambient air. 

The ambient air is an aerosol, which is to say that ambient air is a gas with fine 

solid particles or liquid droplets suspended and carried in it.  For purposes of simplicity, 

the term aerosol particle is used in this document to refer to both solid particles and liquid 

droplets in ambient air unless explicitly stated otherwise.  Sampling ambient air typically 

involves drawing air into and through a device, with the aerosol particles being either 

analyzed immediately and exhausted or retained.  If retained, aerosols are captured on a 

nominally dry collection surface or within a liquid collection media, and analyzed at a 

later time.  Instruments that immediately analyze and exhaust aerosol particles are 

typically only used to measure the size distribution or concentration of aerosol particles 

and are not capable of biological analysis of the aerosol particles.  When collecting air 

samples for biological agents it is necessary to retain a sample of the aerosol particles so 

that they may subsequently subjected to biological analyses. 

Two common methods of retaining a sample on a collection surface are filter 

collection and solid impaction.  In filter collection, the air is drawn through a filter made 

of a particular material and pore size, and aerosol particles are largely collected due to 

three predominate collection mechanisms: impaction, interception, and diffusion (Hinds, 

1999).  In solid impaction, the air is drawn through an individual or series of nozzles or 

orifices or along a centrifugal path, and due to flight characteristics that are a function of 

aerosol particle size, aerosol particles are separated and deposited on a surface based 

upon their size (Marple, et al., 1991).  Examples of samplers that exploit solid impaction 
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surface collection are slit, Anderson, and cyclones samplers, which are illustrated in 

Figure 1.   

 

Figure 1: Slit, Anderson, and cyclone impaction-based aerosol samplers 

 (Verreault, et al., 2008. Reproduced with Permission from American Society of Microbiology) 

  

The general method for retaining a sample within a liquid collection media is 

liquid impaction.  In liquid impaction, the sampled air is drawn through an impinger tube 

which is either a certain distance from and directed towards or inserted into a liquid 

collection media surface.  Aerosol particles either impact and are captured by the surface 

of the liquid collection media or are injected into and retained in the bulk of the liquid 

collection media (Willeke, et al., 1998).  Examples of impinger samplers that exploit 

liquid impaction are the more recently developed swirling aerosol collector, 

commercially known as the Biosampler®, and the classic All Glass Impinger® (AGI), 

which are illustrated in Figure 2.  AGI samplers are further classified and named based 

upon the set distance, in millimeters (mm), that the airflow exit is set vertically above the 

bottom of the liquid vessel.  The airflow exits of the AGI-30 and AGI-4 are 30 mm and  
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Figure 2: Swirling aerosol collector and All Glass Impinger (AGI) liquid impactors 

(Verreault, et al., 2008. Reproduced with Permission from American Society of Microbiology) 

 

4 mm, respectively, above the bottom of the liquid vessel (Lin, et al., 1997). 

There are competing advantages and disadvantages to consider in selecting the 

type of sampler technology and collection method to use, such as filter collection, solid 

impaction, or liquid impaction, when collecting a sample from ambient air for biological 

analysis.  The two most important considerations is volume of the air to be sampled, 

which is normally determined by the sampler flow rate and chosen sampling period, and 

the biological agent of interest, if known (Brasel, et al., 2005).  The majority of scenarios 

directing the AF to conduct air sampling for biological agents are focused on terrorist or 

combatant attacks at large facilities or in outdoor environments where concentrations of 

biological agents would likely be relatively low.  Additionally, commanders want 

presumptive analytical test results as quickly as possible to support operational decision 

making in emergency response or wartime situations.  Therefore, due to nature of 

suspected biological agent attack scenarios and commanders’ decision making needs, the 

implied preference is to use a sampler that will enable analyzing the largest volume of air 
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in the shortest period of time, which directs the selection of high volume samplers.  

However, other crucial factors to consider are the biological viability requirements of the 

analytical method that will be used to analyze the collected sample.  For simplicity, in 

this work the term ‘viable’ shall refer to the biological agent in question existing in such a 

state or condition as to permit detection by a particular method.  For example, polymerase 

chain reaction (PCR) methods do not require the biological agent of interest to be active, 

in the case of viruses, or alive, in the case of bacteria; therefore, viruses, when inactive, 

and bacteria, when dead, are viable to PCR-based detection methods (Bermingham & 

Luettich, 2003).  However, if the ribonucleic acid (RNA) of an inactive virus or the 

deoxyribonucleic acid (DNA) of a dead bacteria has been compromised in some way 

such that PCR-based methods are no longer effective in detecting the virus or bacteria, 

then inactive virus and dead bacteria are no longer viable.  Therefore, when collecting a 

biological agent sample for analysis, it is critical that the sampling method maintain the 

viability of the collected sample for the analytical detection methods to be employed. 

With the desired sampling characteristics then being to analyze a large volume of air, in 

as short a sampling time as possible, and offer superior maintenance of biological agent 

viability, a strong argument can be made that, the optimum sampler would be a high 

volume, liquid impaction-based sampler. 

   

Primary Air Force Airborne Biological Agent Sampling Equipment 

The federal government responded to the 9/11 attack, post 9/11 anthrax letter 

attacks, and increased terrorist threats to use biological agents against US interests by 

designing, developing, and deploying the Portal Shield monitoring system (Institute of 
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Medicine, 2010).  The Portal Shield monitoring system, developed by the DoD, is a 

modular collection of individual units that can collect and analyze ambient air for a 

variety of biological agents.  The Portal Shield units are deployed throughout the world to 

high value, high risk fixed sites that are likely targets to terrorist attacks to monitor 

ambient air.  Although Portal Shield units provided biological agent detection capability 

at fixed AF assets, the units offered no practical capability to address the need for mobile 

biological agent detection capability for rapidly responding to immediate threats, 

emergency response incidents, or battlefield actions.  To address the need for rapid, 

mobile biological agent detection, the AF purchased the DFU-1000 and the XMX/2L-

MIL, which are manufactured by Lockheed Martin Integrated Technologies and Dycor 

Technologies, Inc. (Dycor), respectively. 

The DFU-1000 was purchased for use by AF Civil Engineering (CE) Emergency 

Management (EM) personnel.  The DFU-1000 is a high volume air sample that employs 

the filter collection method to obtain an aerosol sample.  The DFU-1000 sampling flow 

rate is approximately 800 liters per minute (lpm) and is rated for continuous duty, with a 

40,000 hour life.  The DFU-1000 uses a standard 47 millimeter (mm) diameter polyester 

felt filter, with a pore size of 1.0 micrometer (µm).  This filter was evaluated for particle 

sizes as small as 100 nanometers (nm) and found to have a collection efficiency of 75 

percent for 100 nm particles (Lawrence, 2003).  The DFU-1000 was intended for indoor 

use only; however, an updated version, the DFU-2000, was subsequently produced for 

outdoor use in harsh environments that features an exterior shelter, an inlet mast 

extendable up to nine feet, and a pre-separator to eliminate large particles or debris 

(JPEO-CBDX, 2008). 
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The XMX/2L-MIL, which shall hereafter be referred to as the XMX, was 

purchased for use by AF Bioenvironmental Engineering (BE) personnel.  The XMX is a 

high volume air sampler that combines virtual impaction particle flow separation and the 

liquid impaction collection method to collect an aerosol sample.  Virtual impaction 

differs from aerosol inertial impaction as the main sampling flow drawn into the 

instrument is physically separated into two flows, a primary flow containing the particles 

below a particular cut-point size and a secondary flow containing the particles above the 

cut-point size (Loo & Cork, 1988). The XMX draws in a sampling flow of approximately 

700 lpm, with particles larger than 10 µm removed at the device inlet, which is then 

separated at the first stage of the virtual impactor into a primary flow containing the 

particles smaller than 1.0 µm and a secondary flow containing the particles larger than 

1.0 µm.  The secondary flow is approximately 12 lpm, and, therefore, is highly 

concentrated with particles between 1.0 and 10 µm as all the particles in this size range 

that were drawn in with the main sampling flow should be contained in the secondary 

flow.  The secondary flow then passes through the second stage of the virtual impactor, 

which serves to reject aerosol particles smaller than 1.0 µm that undesirably passed 

through the first stage of the virtual impactor to the primary flow.  Lastly, the vacuum 

pump, which creates the secondary flow, draws the secondary flow through the third 

stage of the virtual impactor into a liquid impinger.  The liquid impinger contains 

collection media that captures and retains the particles in the secondary flow.  The 

collection media is typically either sterile water or a phosphate buffered saline (PBS) 

solution; however, other collection media, such as Remel MicroTest M5 Multi-Microbe 

Media® (Remel M5), are available to address specific user requirements.  
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Thesis Objectives and Limitations     

This study seeks to resolve three hypotheses regarding the flow rates of the XMX, 

two hypotheses regarding the performance of the virtual impactor of the XMX, and two 

hypotheses regarding the performance of two different collection media used with liquid 

impactor of the XMX.  Other objectives include producing two experimentally 

determined graphs showing the concentration ratio (CR) as a function of particle size for 

virtual impactor secondary flow rates of 5 and 10 lpm.  The following questions will be 

used to evaluate XMX and collection media performance, with an overview of specific 

hypotheses that will be tested presented in Table 1: 

1. Do the flow rates of AF-fielded XMXs match those reported by the 

manufacturer? 

2. Does the virtual impactor performance vary with the secondary flow rate? 

3. Is the virtual impactor performance consistent across XMXs? 

4. Do different collection media capture and retain particles equally? 

5. Does collection media capture and retain particles equally at different 

secondary flow rates? 

The XMX is a high volume liquid impinger air sampler, reportedly having a total 

flow rate of 800 lpm, standard secondary flow rate of 12 lpm, and a reduced secondary 

flow rate between 4 and 5 lpm.  As these flow rates are important in designing an 

effective sampling plan, determining the limit of detection (LOD) for sampling methods, 
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Table 1: Overview of the hypotheses to be tested 

Test 

performed 

Null hypothesis Alternate 

hypothesis 

Analysis method 

Total flow 

rate 

The total flow rate of 

the XMX equals the 

manufacturer’s 

specification 

The total flow rate 

of the XMX does 

not equal the 

manufacturer’s 

specification 

Measure total flow rate 

for several XMXs and 

compare sample mean 

to manufacturer’s 

specification 

Standard 

secondary 

flow  rate 

The standard 

secondary flow rate of 

the XMX equals the 

manufacturer’s 

specification 

The standard 

secondary flow rate 

of the XMX does 

not equal the 

manufacturer’s 

specification 

Measure standard 

secondary flow rate for 

several XMXs and 

compare sample mean 

to manufacturer’s 

specification 

Reduced 

secondary 

flow rate 

The reduced 

secondary flow rate of 

the XMX equals the 

manufacturer’s 

specification 

The reduced 

secondary flow rate 

of the XMX does 

not equal the 

manufacturer’s 

specification 

Measure reduced 

secondary flow rate for 

several XMXs and 

compare sample mean 

to manufacturer’s 

specification 

Virtual 

impactor 

performance 

The secondary flow 

rate does not affect 

virtual impactor 

performance  

The secondary flow 

rate does affect 

virtual impactor 

performance 

Determine the 

concentration ratio at 

two secondary flow 

rates and evaluate 

variability via ANOVA 

Inter-

instrument 

variability 

Virtual impactor 

performance 

consistent across 

XMXs 

Virtual impactor 

performance not 

consistent across 

XMXs 

Evaluate virtual 

impactor performance 

variability via ANOVA 

Collection 

media 

performance 

at same 

secondary 

flow rate 

PBS solution and 

Remel M5 equally 

capture and retain 

particles at the same 

secondary flow rate 

PBS solution and 

Remel M5 do not 

equally capture and 

retain particles at 

the same secondary 

flow rate 

Determine fraction of 

particles captured and 

retained in collection 

media and evaluate 

variability via ANOVA 

Collection 

media 

performance 

at different 

secondary 

flow rates 

PBS solution equally 

captures and retains 

particles at two 

secondary flow rates 

PBS solution does 

not equally capture 

and retain particles 

at two secondary 

flow rates 

Determine fraction of 

particles captured and 

retained in collection 

media and evaluate 

variability via ANOVA 
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and evaluating and comparing XMX performance, it is essential to verify if these flow 

rates correctly reflect those of fielded XMXs.  There are three hypotheses regarding these 

flow rates, with the null hypotheses being that the manufacturer’s reported flow rate is 

equal to the experimentally measured flow rate of fielded XMXs, and the alternative 

hypotheses being that the manufacturer’s reported flow rate is not equal to the 

experimentally measured flow rate of fielded XMXs.  

Virtual impactor performance is characterized by the CR, which is defined as the 

ratio of the particle concentration in the secondary flow of the XMX to the particle 

concentration in the ambient air.  Any evaluation to determine the air concentration limit 

of detection (LOD) for a biological agent when using the XMX requires knowing the CR 

applicable to the aerosol and sampling conditions.  Dycor has provided a graph showing 

how the CR varies with particle size when operating the virtual impactor of the XMX at a 

secondary flow rate of 1 lpm.  However, Dycor reports that the standard secondary flow 

is 12 lpm, and a previous study found that it was necessary to reduce the secondary flow 

rate to 5 lpm to prevent excessive foaming of collection media Remel M5 (Cooper, 

2010).  

The first hypothesis regarding virtual impactor performance concerns variability 

due to the secondary flow rate.  The null hypothesis is that secondary flow rate, when it is 

either 5 or 10 lpm, does not have a significant effect on the experimentally determined 

CR, and the alternative hypothesis is that the secondary flow rate, when it is either 5 or 

10 lpm, does have a significant effect on the experimentally determined CR.  The second 

hypothesis regarding virtual impactor performance concerns inter-instrument variability.  

The null hypothesis is that the virtual impactor used does not have a significant effect on 
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the experimentally determined CR, and the alternate hypothesis is that the virtual 

impactor used does have a significant effect on the experimentally determined CR.  The 

status quo represented by AF operating procedures for the XMX in these cases is 

expressed in both of these null hypotheses. 

The first hypothesis regarding collection media performance concerns inter-media 

variability.  The null hypothesis is that the collection media, when it is either PBS 

solution or Remel M5, does not have a significant effect on the experimentally 

determined capture and retention of particles in the collection media at a secondary flow 

rate of 5 lpm, and the alternative hypothesis is that the collection media, when it is either 

PBS solution or Remel M5, does have a significant effect on the experimentally 

determined capture and retention of particles in the collection media at a secondary flow 

rate of 5 lpm.  The second hypothesis regarding collection media performance concerns 

intra-media variability.  The null hypothesis is that secondary flow rate, when it is at 5 

lpm or 10 lpm, does not have a significant effect on the capture and retention of particles 

in PBS solution collection media, and the alternative hypothesis is that the secondary 

flow rate, when it is at 5 lpm or 10 lpm, does have a significant effect on the capture and 

retention of particles in PBS solution collection media.  
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II. Literature Review 

 

Overview 

This section seeks to review scientific literature relevant to using the XMX to 

collect air samples for subsequent biological agent analysis.  Several areas of applicable 

interest are presented including selected cases of air sampling for biological agents, 

aerosol characteristics and sampling methods, virtual impaction, AF fielded high volume 

air samplers, collection media, and fluorometry.  Field and laboratory-based studies will 

be reviewed.  The AF uses high volume air sampling equipment that employ dry 

filtration, virtual impaction, and liquid impinger methods to collect biological agent 

samples.  This review will focus on virtual impaction and liquid impinger collection 

methods, two collection media, and using fluorometry to evaluate capture and retention 

of fluorescing spheres in collection media.    

 

Selected Cases of Air Sampling for Biological Agents 

Air Sampling for SARS. 

SARS spread rapidly around the world in 2003.  An initial epidemiology study 

performed by Olsen sought to evaluate the risk, if any, to fellow passengers of in-flight 

SARS-associated coronavirus (SARS-CoV) infection due to the infected passengers 

when traveling on commercial flights (Olsen, et al., 2003).  The study included three 

specific commercial flights in which between one and four passengers were either SARS 

symptomatic or infected.  Olsen found that the relative risk of infection was 3.1 for those 

passengers who were seated in the three rows in front of the infected passenger as 
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compared to passengers sitting elsewhere in the aircraft.  Additionally, only one of the 

561 passengers on board the two flights that were 90 minutes in duration became 

infected, whereas 22 of the 120 passengers on board the flight that was 180 minutes in 

duration became infected.  Taken together, the relative risk and infection during flight 

time findings suggest an airborne proximity exposure risk and a minimal infective dose 

associated with SARS, which suggests the importance of obtaining air sampling results in 

settings with similar exposure conditions. 

To better characterize the risk of airborne transmission of SARS, Booth employed 

novel air sampling to investigate environmental contamination in SARS units (Booth, et 

al., 2005).  Air samples were collected using both wet air and dry air filtering techniques 

from 19 rooms in the SARS unit of four healthcare facilities in Toronto, Canada, where 

SARS patients were staying.  The collected specimens were tested for the presence of 

SARS-CoV using PCR and cell culture analyses.  Wet air sampling was performed using 

a high-resolution slit sampler developed by Defence Research and Development Canada 

(DRDC).  Dry air filter sampling was performed using a closed-face, 3-piece disposable 

plastic cassette with a polytetrafluoroethylene (PTFE) membrane filter with a 0.3 µm 

pore size.  Viral RNA was extracted from the wet air samples and analyzed using a one-

step reverse-transcriptase (RT)-PCR technique for two different targets on the SARS-

CoV genome.  Viral RNA from PTFE membrane filters was similarly analyzed after 

having been extracted by immersion in a suitable buffer fluid and rotated for 20 minutes 

on an orbital shaker.  Two of the ten wet air samples were positive for SARS-CoV and all 

28 of the dry air filter samples were negative for SARS-CoV.  Booth provided the first 
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experimental confirmation of viral aerosol generation by a SARS patient, which indicated 

the possibility of airborne transmission of SARS. 

Air Sampling for Adenoviruses. 

Adenoviruses have impacted basic military trainees for many years.  Artenstein 

was possibly the first to evaluate air sampling for acute respiratory disease agents 

affecting military recruits (Artenstein & Miller, 1966).  Artenstein used the Large 

Volume Sampler (LVS) produced by Litton Industries, Inc., in support of an 

epidemiological study of an acute respiratory disease caused mainly by adenoviruses.  

The LVS, which had an electrostatic precipitator and used liquid collection media, was 

employed to maximize sensitivity to detection.  Ill recruits were monitored individually 

in hospital rooms with volumes of 40.8 cubic meters (m
3
).  The LVS was run for five 

minutes at a flow rate of 10.1 cubic meters per minute (m
3
/min), for a total sample 

volume of 50.5 m
3
.  Artenstein recovered 1 adenovirus unit per 7.84 m

3
 of air sampled 

and concluded that it was clear that an AGI operating at 12.5 lpm was inadequate for 

collecting adenoviruses at such low concentrations, thereby stressing the need for a high 

volume sampling approach for detecting adenoviruses. 

Following the loss of adenovirus vaccines in 1999, adenoviruses re-emerged as a 

source of acute respiratory disease in military recruit settings.  Russell sought to better 

understand the transmission dynamics of adenovirus in the living quarters of military 

recruits (Russell, et al., 2006).  Active surveillance for acute respiratory diseases were 

performed on 341 recruits and support personnel and environmental samples were 

simultaneously collected.  Environmental sampling methods performed included swipe 
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sampling pillows, lockers, and rifles and air sampling using the DFU-1000.  The DFUs 

were run for 12 hours per day, during the evening, night, and early morning hours when 

the recruits were typically there after completing their daily routine.  The two DFU filters 

were subsequently analyzed for adenovirus, one by molecular testing and the other by 

growth in cell cultures.  A total of 19 air samples were analyzed, with 42% found positive 

for adenovirus.  Russell found that the greatest quantity of adenovirus DNA detected in 

the environment was significantly associated with adenovirus infections. 

Implications of Select Studies to use of XMX for Biological Agent Sampling. 

There are two primary implications of the reviewed selected cases concerning air 

sampling for SARS and adenoviruses that are informative when considering the utility of 

the XMX: sample volume and collection method.  Artenstein stressed the importance of 

having a large sample volume, which is particularly relevant for probable biological 

agent attack scenarios in large facilities or outdoor environments where biological agent 

concentrations would likely be quite low due to dilution effects.  The XMX would have a 

sample volume of 3,500 liters during the desired five minute sampling period, which is in 

relative proximity to the 7,840 liters in which Artenstein demonstrated the ability to 

detect 1 adenovirus unit.  In comparison, the highly regarded swirling aerosol collector 

developed by Willeke would collect a sample volume of 62.5 liters in the same sampling 

period (Willeke, et al., 1998).  The preference for a large sample volume was further 

emphasized by Olsen concerning SARS-CoV.  The disparity in the SARS attack rate for 

passengers in the flight of 180 minutes in duration compared to passengers in the flights 

of 90 minutes in duration, 18.3% and 0.2%, respectively, indicate the potential for 
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particularly low biological agent concentrations in ambient air due to infectious subjects 

in a relatively confined space, highlighting the importance of sample volume. 

The collection method used can have a notable impact on maintaining viability of 

biological agents to support detection during analysis.  In analyzing air samples for 

SARS-CoV, Booth had two of ten wet air samples test positive using RT-PCR, as 

opposed to zero of  28 dry air filter samples, which suggests superior performance for wet 

sampling over dry sampling in maintaining the viability of SARS-CoV samples for 

detection by RT-PCR analysis.  However, Russell showed that dry air filter sampling can 

be effective in maintaining sufficient viability for detection of adenoviruses.  Russell 

collected 19 dry air filter samples using the DFU-1000 and was able to detect adenovirus 

on 42% of the samples.  These findings illustrate that viability maintenance sufficient for 

detection varies amongst biological agents, and follows the finding by Verreault 

(Verreault, et al., 2008) that wet air sample methods are generally superior to dry air 

sample methods at maintaining viability of viral agents.  

 

Aerosol Characteristics and Sampling Methods 

Particle Size and Settling Characteristics. 

Particle size is probably the most important characteristic of an aerosol.  Aerosols 

are particles that remain suspended in the air.  The settling velocity of a particle describes 

the average speed at which the particle travels downward, and when combined with the 

height of a particle, provides an estimate of how long the particle will remain suspended 

in the air.  Particles of sizes 1 and 100 µm require 24 hours and 10 seconds, respectively, 

to settle to the ground from a height of 3 meters.  The tendency for particles to remain 
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airborne increases dramatically for those less than a micrometer in size, with the smallest 

particles remaining aloft for as long as several months or more (Utrup & Frey, 2004).  

Therefore, when developing sampling strategies for biological agent detection, the period 

over which air sampling is conducted should be sufficiently long so as to account for the 

settling of the smallest relevant particle size and the altitude at which the suspected 

biological agent was released. 

Relevance of Particle Size on Human Health Effects. 

This research concerns collecting particles containing biological agents, which are 

assumed to be associated with deleterious health effects.  Health risks associated with 

aerosols are principally due to particle composition and the region in which they deposit 

in the respiratory tract.  The location of respiratory tract deposition is largely determined 

by particle size.  Particles deposit in the respiratory tract due mainly to interception, 

impaction, diffusion, and settling collection mechanisms.  Collectively, these collection 

mechanisms lead to the characteristic deposition probability as a function of particle 

diameter curve shown in Figure 3 (Maynard & Kuempel, 2005).  Particles larger than 10 

µm (10
4
 nm) in diameter are normally prevented from entering the lower respiratory tract 

as they are deposited in the head region, either in the nose, mouth, or upper airways.  For 

this reason, air samplers are commonly designed to have a 10 µm cut-point prior to the 

sample collection or particle analysis point.  Particles 2.5 µm (2.5 x 10
3
 nm) in diameter 

are the size least likely to deposit in the respiratory system.  Particles most likely to 

deposit in the alveolar region are approximately 0.01 µm (10 nm) in diameter.  Hogan  
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Figure 3: Respiratory deposition probability 

(From Maynard & Kuempel, 2005.  Reprinted with permission from Springer Science) 

suggested that sub-micrometer particles likely pose a more significant role in morbidity 

as they offer the greatest potential to deposit and deliver virus-containing particles to the 

alveolar region (Hogan, et al., 2005), which then permits a virus to diffuse through the 

alveolar membrane and enter the blood stream (Madigan, et al., 1997).  Ideally, the 

collection efficiency of an air sampler for sub-micrometer particles would be at least 

equal to the respective alveolar deposition probability for the particle size of interest. 

 

Measurement of Particle Size Distribution. 

The particle size distribution of an aerosol can be measured using a variety of 

different particle sizing devices.  Aerosol sampling devices capable of measuring particle 

size distributions are generally of one of two classes: real time measurement or 

gravimetric analysis.  Examples of real time measurement and gravimetric analysis 

aerosol sampling devices are the aerodynamic particle sizer (APS), manufactured by TSI, 
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Inc. (TSI), and cascade impactors, respectively.  The APS uses the time-of-flight of 

individual particles that are accelerating through a flow field to determine particle size.  

The time-of-flight for the particle being analyzed is determined, matched to the time-of-

flight for a unit density sphere, and is then reported to be the size of the unit density 

sphere having the same time-of-flight (Chen, et al., 1998).  The APS is an example of an 

evaluated method for particle sizing as the size of the particle of interest is not expressly 

measured, but rather, some other characteristic of the size of the particle is used as a 

surrogate for size and compared to an accepted standard.  Microorifice uniform deposit 

impactor (MOUDI), manufactured by MSP Corporation (MSP), or cascade impactors are 

direct methods for measuring the size of the particles.  The pre- and post-sampling 

masses of the impactor stages are measured, and, when combined with the known cut-

point size of each stage and density of the particle material, permit the direct calculation 

of the particle size distribution (Marple, et al., 1991). 

The APS measures and reports the particle size distribution over the particle size 

range of 0.5 to 20 µm.  Peters experimentally compared the performance of the TSI 

model 3321 APS to a cascade impactor and found that the APS counting efficiency for 

the particle size range 1 to 3 µm and 4 µm particles was 45% and 60%, respectively 

(Peters & Leith, 2003).  Peters found that, despite having lower counting efficiencies for 

these particle size ranges, the APS produced a particle size distribution that was similar in 

shape to that of the cascade impactor, and proposed the use of an adjustment factor on the 

APS particle concentration data.  Volckens further evaluated the deficient counting 

efficiency of the model 3321 APS (Volckens & Peters, 2005), building on the work of 
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Kinney (Kinney & Pui, 1995), who identified inertial impaction on the inlet nozzle for 

particles larger than 3 µm, and Armendariz (Armendariz & Leith, 20002), who identified 

that collecting data in the correlated mode led to errors in the reported size distribution 

and concentration.  Volckens characterized the counting efficiency for the model 3321 

APS for the particle size range of 0.8 to 10 µm using both liquid and solid particles.  

Volckens found that counting efficiencies ranged from 85% to 95% and 75% to 25% over 

the 0.8 to 10 µm size range for solid and liquid particles, respectively, with the drop in 

liquid particle counting efficiency attributable to larger liquid droplets impacting and 

adhering to the instrument’s inner nozzle.  Peters investigated possible alternative devices 

to the APS for particle size distribution measurements in the sub-micrometer range using 

three monodisperse polystyrene latex spheres (PSL) spheres and polydisperse Arizona 

Road Dust (ARD) (Peters, et al., 2006).  Peters found that the Grimm 1.108 and 1.109 

portable aerosol spectrometers, which employ optical properties to size particles, detect 

particles smaller than 0.7 µm with greater efficiency than the APS.   Therefore, when 

evaluating the performance of air sampling equipment in experimental laboratory studies, 

consideration should be given to selecting a particle size distribution measuring device or 

system that is as accurate and appropriate as possible for all relevant particle sizes and the 

design of the experiment performed. 

Air Sampling Methods. 

Dry filtration, solid impaction, liquid impinger, and virtual impaction methods are 

commonly employed to collect airborne biological agent samples.  Dry filtration is 

frequently used to collect airborne viral biological agents as most other sampling methods 
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exhibit comparatively lower collection efficiencies for aerodynamic particles sizes less 

than 0.5 µm (Hinds, 1999).  Impaction and interception are dominant particle collection 

mechanisms in dry filtration for particles larger than 0.3 µm.  Diffusion is the dominant 

particle collection mechanism in dry filtration for particles smaller than 0.3 µm.  In the 

sub-micrometer range, impaction, interception, and diffusion are least efficient at 

collecting particles 0.3 µm in size; therefore, filter efficiency increases for particles larger 

or smaller than 0.3 µm, which is the rationale for using 0.3 µm as the size benchmark for 

filter efficiency (Verreault, et al., 2008).  However, dry filters are not ideal for biological 

agent sampling as they can cause structural damage to microorganisms or interfere with 

culture analysis of biological agent samples due to desiccation.  Structural damage to or 

desiccation of microorganisms could lead to a false negative sample analysis, an 

extremely undesirable result when responding to an event where a biological agent attack 

is suspected.  Burton used a Bacillus anthracis simulant to evaluate which combinations 

of four filters and extraction methods demonstrated the best recovery performance 

(Burton, et al., 2007).  Burton found that mixed cellulose ester (MCE) and 1 µm PTFE 

filters in combination with vortexing and shaker extraction demonstrated the best 

recovery performance. 

Impactors and cyclones are air samplers that employ solid impaction.  Solid 

impactors draw a sampling air stream through a slit and direct the accelerated flow 

toward a solid surface.  The flow streamlines abruptly change directions as the flow 

approaches the impaction surface, and the inertia of particles larger than the impactor’s 

cut-point size deviate from the streamlines and strike the impactor (Verreault, et al., 
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2008).  Single stage solid impactors do not permit particle size or mass concentration 

evaluation for more than a single size range; those particles larger than the impactor cut-

point size and smaller than a maximum particle size cut-point due to the sampler inlet 

utilized.  The MOUDI was developed to permit evaluation of multiple size ranges.  The 

MOUDI is a vertical stack of solid impactors.  The successive stages of the MOUDI have 

smaller orifice holes than the previous stage, thereby enabling the MOUDI to operate as a 

series of single stage impactors with specific, individual particle size cut-point (Marple, 

et al., 1991).  The MOUDI was inspired by the initial use of a single stage micro-orifice 

impactor to classify sub-micrometer aerosol particles (Kuhlmey, et al., 1981).  Cyclones 

differ from solid impactors in that circular streamlines and centrifugal forces lead to 

particle deposition on a solid surface, and cyclones do not have as sharp a particle size 

cut-point as impactors (Hinds, 1999).  Both impactors and cyclones tend to compromise 

biological agent viability due to the effects of impaction and desiccation.  However, 

cyclones have been developed that use a wetted collection surface to diminish the effects 

of desiccation and improve culturability of biological agents (Griffiths, et al., 1997).  

Macher evaluated the performance of dry, personal cyclones against dry filtration in field 

experiments and found they performed similarly in collecting airborne fungi; however, 

the cyclones exhibited greater uncertainty at lower fungi concentrations (Macher, et al., 

2008). 

Liquid impingers have been used to sample for airborne biological agents for 

more than 70 years (Miles & Mistra, 1938) and comparatively evaluated for over 50 

years (May & Harper, 1957).  The evaluation of liquid impingers saw renewed interest as 
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the need for bioaerosol sampling grew in the 1990s.  Interest in using liquid impingers 

was further enhanced as the collection media was more suitable to maintaining viability 

of biological agents and for subsequent splitting into multiple aliquots for separate 

analyses (Grinshpun, et al., 1997).  The two liquid impingers most commonly used at 

present are the AGI-30 and the Biosampler®, manufactured by SKC, Inc., both typically 

operated at 12.5 lpm and considered low volume samplers as the sampling rates are less 

than 40 lpm (Verreault, et al., 2008).  The AGI-30 performs well in collecting particles 

2.0 µm and larger, but experiences a notable drop in collection efficiency for sub-

micrometer particles.  Presented in Table 2 are collection efficiencies of the AGI-30 and 

Biosampler®, as experimentally measured by Willeke (Willeke, et al., 1998).  Willeke 

concluded that the design of the Biosampler® reduced the evaporative loss of collection 

fluid compared to the AGI-30, thereby reducing the reaerosolization of sub-micrometer 

particles and exhibiting superior collection efficiency for such particles. 

Samplers that collect air samples at rates greater than 40 lpm are generally 

considered high volume samplers.  The multistage liquid impinger is the most notable 

classic liquid impinger that operates as a high volume sampler.  The multistage liquid 

impinger has three stages and can be run as high as 55 lpm.  Each stage of the multistage 

impinger consists of a vertically oriented impinger tube that the sampled air is drawn 

through and towards a wetted disc.  Particles larger than the cut-point size will strike the 

wetted disc and be retained.  Particles that are smaller than the stage cut-point size will 

 

 



 

27 

 

Table 2: Particle collection efficiency of AGI-30 and Biosampler® 

(Adapted from Willeke, et al., 1998) 

Particle Size 

(Microns) 
AGI-30 Collection Efficiency (%) 

Biosampler Collection Efficiency 

(%) 

0.3 69 78 

0.6 71 88 

0.8 72 91 

1.1 82 92 

1.7 93 93 

2.0 95 95 

 

follow the air flow and proceed to the next stage, with each successive stage having a 

smaller particle cut-point size (May, 1966).  The multistage liquid impinger has two 

primary advantages over the critical orifice impinger: minimal violence of impingement 

minimizes damage to delicate cells and superior sustainment of flow rate through the 

compact third stage due to greatly reduced splashing and frothing of collection liquid on 

the wetted discs (Cown, et al., 1957).  One limitation of the multistage liquid impinger is 

that its performance is degraded for very dilute aerosols (May, 1966).   

 

Virtual Impaction 

Virtual impaction is similar to classic solid impaction in that the inertia of a 

particle is used to separate particles in different size ranges.  However, the most notable 

difference between virtual and solid impaction is that in solid impaction particles larger 

than a cut-point size are collected on a surface, whereas in virtual impaction no particles 

are technically collected, but rather, are separated into two different flow streams, with 
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one containing particles smaller than the cut-point size and the other containing particles 

larger than the cut-point size.  Due to this separation in flows, virtual impactors are 

commonly referred to as dichotomous samplers as a single flow is separated into two 

distinct flows containing particles in different size ranges based on a single cut-point size 

(Loo, et al., 1976).  However, a virtual impactor sampler can have multiple stages, as was 

the case with the first virtual impactor sampler.  Hounam  introduced a virtual impactor 

sampler that operated at 30 lpm with three different stages having corresponding cut-

points of 1.2, 4, and 14 µm (Hounam & Sherwood, 1965). 

Schematic diagrams of the basic design elements of a virtual impactor and a low cut-

point virtual impactor are shown in Figure 4.  The total flow is drawn through the 

acceleration nozzle, which accelerates the air and aerosol particles.  The minor flow, 

typically 10 to 20% of the total flow, is drawn through the collection probe.  The major 

flow, typically 80 to 90% of the total flow, produces sharply curved streamlines and 

proceeds to flow through the major flow cavity.  Particles larger than a certain size lose 

fidelity with the major flow, due to their greater inertia, and cross over streamlines and 

enter the collection probe to enter the minor flow.  Designing a virtual impactor with a 

sub-micrometer cut-point is a significant challenge as the necessary high jet velocities 

require low pressures downstream of the jet nozzle (Sioutas, et al., 1994).  Sioutas found 

that theoretical predictions matched experimental results for virtual impactor 

performance as a reduction in the minor flow from 20% to 10% of the total flow leads to 

a larger cut-point size, an increase in particle losses, and a steeper collection efficiency 

curve. 
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Figure 4: Schematics of a (a) virtual impactor and (b) low cut-point virtual impactor 

(From Sioutas, et al., 1994.  Reprinted with permission from Taylor & Francis) 

A key advantage offered by virtual impactors when sampling to detect low 

concentrations of biological agents in ambient air is that they concentrate particles in a 

minor flow, thereby substantially increasing the operative sample size while still 
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permitting the use of traditional biological agent analysis methods.  Romay developed a 

three stage concentrating virtual impactor (CVI) that concentrated 50% to 90% of the 

particles in the 2.3 to 8.4 µm size range from a total flow of 300 lpm into a minor flow of 

1 lpm (Romay, et al., 2002).  The design of this CVI included features such as multiple 

nozzles to reduce the pressure drop for a given flow rate and cut-point and substantially 

reducing inadvertent deposition of large particles on internal surfaces by arranging 

nozzles to oppose each other (Marple, et al., 1990).  However, virtual impactors have two 

distinct shortcomings in sampling for biological agents: (1) virtual impactors are not 

particle collectors, but only direct particles to separate flows to facilitate collection and 

(2) inherent to virtual impactor design is the practical mutual exclusion of simultaneously 

having a high total flow rate with substantial particle concentration and a sub-micrometer 

cut-point size.  These are notable deficiencies when sampling ambient air containing a 

low concentration of sub-micrometer particles dispersing biological agents. 

 

Air Force Fielded High Volume Samplers 

The AF has elected to predominantly use high volume samplers, the DFU-1000 

and XMX, when attempting to detect airborne biological agents.  High volume sampling 

is particularly important when trying to detect biological agents in dilute outdoor ambient 

air (Cox & Wathes, 1995).  The decision to use high volume samplers, rather than low 

volume samplers, helps minimize the risk of false negative detections due to low airborne 

biological agent concentrations and overall biological agent detection time period, so that 

informed command decisions can be made as quickly as possible.  The DFU-1000 was 

used in a field study by Russell to evaluate environmental exposures of military training 



 

31 

 

recruits to adenovirus subtype 4 in their barracks (Russell, et al., 2006).  Air samples 

were collected using two different methods: the DFU-1000 and an electrostatic 

precipitator.  Positive PCR analyses for 42% and 50% of the samples collected by the 

DFU-1000 and electrostatic precipitator, respectively, demonstrated a credible sampling 

capability by the DFU-1000, as compared to the electrostatic precipitator.  However, 

PCR analysis does not require active, culturable virus; therefore, Russell’s study did not 

demonstrate that the DFU-1000 is effective in ensuring biological agent viability in cases 

when it is needed for detection or quantification. 

There have been at least two field studies using the XMX, or a highly similar 

system, to collect biological agent samples.  Brenner used a US Army prototype 

biological air sampler, the XM2, to determine the presence of animal viruses, coliphages, 

and bacteria in various locations at a wastewater management system irrigation site 

(Brenner, et al., 1988).  The XM2 is a high volume, three stage, virtual impactor 

combined with a collection system using impingement and scrubbing to capture particles 

in a collection liquid.  The total flow of the XM2 is 1,050 lpm, and the minor flow 

directed to the particle collection system is 15 lpm.  The XM2 concentrates particles 

sized from 2 to 12 µm into the minor flow at a ratio of 8 to 1 compared to their respective 

concentrations in the total flow.  The collection liquid was cultured in various media and 

observed for growth.  No animal viruses were detected in cell cultures, but both 

coliphages and bacteria were recovered.  Failing to detect animal viruses could have been 

due to use of inadequate cell culture media, inactivation of viruses, or the absence of 

viruses on particles in the size range collected (Brenner, et al., 1988).  Schofield used the 
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XMX/2A and slit sampler arrays to collect air samples at a domestic poultry operation 

following an outbreak of Avian Influenza (AI) virus H7N3 (Schofield, et al., 2005).  

Other than having a secondary flow rate of 1 lpm instead of 12 lpm, the XMX/2A is 

nearly identical to the XMX, with both being manufactured by Dycor, except that the 

XMX/2A does not have a liquid impinger.  Samples were collected in a variety of 

locations, inside and outside a barn, and conditions, upwind and downwind of a barn.  A 

total of 240 samples were collected using slit sampler arrays and a total of 16 samples 

were collected using the XMX/2A.  All samples were initially analyzed using PCR 

analysis.  Any samples found positive for AI virus H7N3 by PCR were subsequently 

followed by virus cell culturing to demonstrate active virus.  All samples collected by slit 

sampler arrays were negative by PCR.  However, seven of the samples collected by the 

XMX/2A were positive by PCR, and two of these seven samples also yielded live virus 

by cell culture.  Schofield had two conclusions important to outdoor environmental 

sampling for biological agents: (1) slit sampling technology, despite having been 

successfully used to collect SARS virus indoors (Booth, et al., 2005), was not effective in 

collecting AI virus outdoors and (2) live virus can be successfully collected using the 

XMX/2A outdoors.  Schofield reasoned that the 30 lpm flow rate of the slit sampler 

arrays was probably too low to detect AI virus in outdoor conditions; therefore, use of 

low flow slit sampler arrays should not be a preferred selection to sample for AI virus in 

outdoor environments. 

There has been at least one experimental laboratory study performed using both 

the DFU-1000 and XMX to collect biological agent samples.  Cooper compared the 
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collection effectiveness of the DFU-1000 and XMX against low volume flow rate 

impingers using MS2 bacteriophage as a surrogate virus in an aerosol test chamber 

(Cooper, 2010).  Cooper found that (1) the XMX could collect viral quantities within 

25% of the quantities collected by low volume impingers when in moderate levels of 

airborne viral load, (2) the DFU-1000 performed marginally compared to the XMX for  

collection effectiveness in moderate levels and below of airborne viral load, (3) the DFU-

1000 is unreliable for quantifying viral agent at moderate levels and below, and that (4) 

both the DFU-1000 and XMX could collect detectable levels of MS2 bacteriophage for 

PCR analysis for all concentrations tested.  However, Cooper was unable to determine if 

Remel M5 was superior to PBS solution when used as the collection media for 

maintaining viability or capturing and retaining particles carrying MS2 bacteriophage 

when collecting samples using the XMX (Cooper, 2010). 

 

Collection Media 

Liquid impingers require collection media to capture and retain aerosol particles 

for analysis.  PBS solution and sterile water are examples of commonly used collection 

media.  It is important for the collection media to be at the very least benign and 

optimally supportive of the biological agent of interest when performing air sampling.  

PBS solution is probably the most commonly used collection media for liquid impingers 

when sampling for biological agents.  PBS solution is a water-based salt solution that 

contains sodium chloride, sodium phosphate, and may also contain potassium chloride 

and potassium phosphate in certain formulations.  The buffer, sodium chloride and 

sodium phosphate, helps to maintain a constant pH, and PBS solution is isotonic and non-
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toxic to cells.  Hermann compared the effects of various additives on PBS solution to 

optimize a sample collection process for porcine reproductive and respiratory virus 

(PRRSV) (Hermann, et al., 2006).   Hermann compared additions of 1% activated carbon, 

0.5% bovine serum albumin, 20% ethylene glycol, and a variety of combinations of all 

three additions to PBS solution.  None of the additives or their combinations had a 

significant impact on the collection efficiency of PRRSV, with all results found to be 

within 10% of the standard PBS solution.  However, the PBS solution with 20% ethylene 

glycol was found to be slightly more effective than standard PBS solution in collecting 

PRRSV.  Additionally, Hermann confined virus quantification to PCR sample analysis; 

therefore, the effects of the additives on maintenance of active PRRSV were not 

evaluated. 

Probably the most notable limitation of PBS solution and sterile water, when used 

as collection media for biological agent sampling, is that neither preserves viruses for an 

extended period of time (Cooper, 2010).  For most AF operating environments, 

preservation of collected environmental virus samples is a necessary performance 

criterion when analysis for active virus is desired.  Remel M5 media was found to be 

effective at preserving active virus for as long as 48 hours after specimen collection 

(Remel, 2005).  Cooper used Remel M5 to collect MS2 bacteriophage in experimental 

studies and found that its use may have offered superior viral maintenance when 

compared to PBS solution (Cooper, 2010).  However, Cooper found that Remel M5 

performance was unacceptable when the XMX secondary flow rate was at the standard 

12 lpm due to excessive foaming.  Hermann evaluated the six anti-foaming agents to 
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determine their impact on viral infectivity and found that none had a significant effect on 

viral infectivity, although four did have a significant effect on host cells (Hermann, et al., 

2006).  Dycor subsequently developed a critical orifice flow reducer that reduced the 

XMX secondary flow rate to approximately 4.5 lpm and excessive foaming of Remel M5 

was eliminated (Cooper, 2010).  However, Hogan (Hogan, et al., 2005) and 

Riemenschneider both noted in their studies that reduced flow rate through the liquid 

impinger could have a significant effect on the sampler performance (Riemenschneider, 

et al., 2010).  Additionally, Dycor has not provided any technical information concerning 

the impact on the performance of the XMX virtual impactor due to reducing the 

secondary flow rate.  Therefore, if Remel M5 or any other collection media requiring a 

reduced liquid impinger flow rate is to be used as a collection media, then it is necessary 

to evaluate the performance of the virtual impactor at a reduced secondary flow rate, if 

determination of the limit of detection is desired. 

 

Fluorometry 

Fluorometry is a type of electromagnetic spectroscopy in which fluorescent light 

from a sample is analyzed (Sharma & Schulman, 1999).    A beam of light excites the 

electrons of molecules of a certain compound, and the excited electrons emit light of a 

lower energy.  Light emitted by an excited electron is fluorescent light.  By measuring the 

intensity of the fluorescing light emitted, the quantity of the fluorescing compound can be 

determined.  Fluorometry of liquid samples was pioneered by Eisinger (Eisinger & 

Flores, 1979).  Eisinger developed several fluorometric techniques for evaluating blood 

samples (Eisinger & Flores, 1985).  Fluorometry has been employed by many researchers 
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to evaluate the amount of fluorescent acid droplets or number of fluorescent PSL spheres 

in liquid media, including Marple, Sioutas, and Romay (Marple, et al., 1991; Sioutas, et 

al., 1994; and Romay, et al., 2002).  In particular, Kesavan conducted fluorometric 

analysis to determine the number of fluorescent PSL spheres in 20 milliliters (mL) of 

filtered deionized water, after removing the PSL spheres from membrane filters by hand 

shaking and vortexing the mixture.  Kesavan observed a linear response in the amount of 

fluorescent light emitted by the number of PSL spheres in the solution for PSL spheres 

ranging from 0.5 to 5 µm in size (Kesavan & Schepers, 2006). 

 

Problem Statement and Summary 

Previous literature provides a thorough background on laboratory and field studies 

on air sampling for biological agents.  In previous studies using the XMX or a highly 

similar device, researchers were able to collect airborne biological agent samples and 

maintain agent viability for both PCR and virus cell culture analyses, demonstrating the 

capability of the XMX to support biological agent detection as a high volume air 

sampling platform.  Also shown was the ability to successfully use multiple collection 

media, PBS solution and Remel M5, to collect biological agents for analysis.  However, 

only one study evaluated the performance of the specific XMX model employed by the 

AF.  Furthermore, for all other studies reviewed, the secondary flow rate of the XMX 

virtual impactor was 1 lpm, which is different from the standard secondary flow rate of 

12 lpm and the reduced secondary flow rate of 4 to 5 lpm, used to prevent excessive 

foaming of Remel M5 collection media.  The performance of the XMX is largely based 

upon two subcomponents: its virtual impactor and liquid impinger.  The primary 
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performance metric for the virtual impactor is the CR and for the liquid impinger it is the 

percentage of particles that are captured and retained in the collection media. None of the 

previous studies evaluated either of these performance metrics for these two 

subcomponents, and values for both these performance metrics are needed to evaluate the 

limit of detection when using the XMX to collect biological agent samples. 

The AF may wish to consider operational use of collection media other than PBS 

solution, particularly Remel M5, for improved maintenance of biological agent viability.  

To use Remel M5, and potentially other collection media, the secondary flow rate must 

be reduced substantially from the standard flow rate of 12 lpm to avoid excessive 

foaming; however, the AF has no information regarding how reducing the secondary 

flow rate impacts the CR of the virtual impactor.  Further, the AF has no information 

regarding the variability of virtual impactor performance between XMX units.  

Additionally, the AF has no direct information regarding the performance of PBS 

solution or Remel M5 in capturing and retaining particles during sample collection.  An 

experimental study should be conducted to evaluate the performance of the XMX virtual 

impactor.  Specifically, the AF should evaluate how different secondary flow rates impact 

the CR of the virtual impactor; evaluate inter-instrument virtual impactor performance 

between XMX units; and produce plots of CR as a function of secondary flow rate for 

potential use in future limit of detection studies.  Also, an experimental study should be 

conducted to evaluate the performance of PBS solution and Remel M5 collection media.  

Specifically, the AF should compare the performance of PBS solution and Remel M5 to 

capture and retain particles with the secondary flow rate at 5 lpm, and the AF should 
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compare the performance of PBS solution to capture and retain particles at two different 

flow rates to evaluate the impact of secondary flow rate on reaerosolization. 

The focus of this research is to evaluate virtual impactor CR performance and 

variability at secondary flow rates of 5 lpm and 10 lpm, and determine the fraction of 

particles that are captured and retained in two different collection media, PBS solution 

and Remel M5, when operating the XMX at standard and reduced secondary flow rates.      
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III.  Methodology 

 

Objective 

The section describes the methodology, procedures, and analyses used to evaluate 

the following performance characteristics when collecting an air sample for biological 

agent detection and analysis: 

1. Measure the primary and secondary flow rates of the XMX. 

2. Determine the CR of the XMX virtual impactor. 

3. Evaluate the impact of changing the secondary flow rate on the observed 

CR. 

4. Evaluate the inter-instrument variability of the CR for the three XMX 

samplers tested. 

5. Produce plots of CR as a function of particle size for two different 

secondary flow rates for XMX samplers. 

6. Determine the fraction of particles of particles passing through the liquid 

impinger that are captured and retained in collection media. 

7. Compare the performance of two different collection media at the same 

secondary flow rate. 

8. Compare the performance of a collection media at two different 

secondary flow rates. 

9. Perform a microscopic analysis to determine the concentration of 

fluorescent PSL (FPSL) spheres in collection media.   
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Study Design Overview 

The primary means for evaluating the XMX is to operate them individually in an 

aerosol test chamber (ATC) while selected test aerosol concentrations and conditions are 

measured and monitored.  Due to the high primary flow rate, size, and heat generated by 

the XMX, the ATC must be sufficiently large and the XMX exhaust flow must be 

discharged outside the ATC, otherwise the test aerosol might not be suitably distributed 

in the ATC or the environmental conditions in the ATC could be adversely impact 

conducting the experimental data collection.  Test aerosol selection, generation, 

fluorometry, and microscopy analysis methods must be established as well.  The 

necessary methods, procedures, and selections for conducting this experimental study are 

described in this section.  Experimental data were collected as detailed in the study 

schedule presented in Appendix A. 

 

Aerosol Test Chamber Setup and Layout 

Experimental studies were performed in an ATC operated by the US 

Environmental Protection Agency (EPA) in Research Triangle Park, North Carolina.  The 

ATC has a volume 14 cubic meters (m
3
), being 2.9 meters (m) long, 2.2 m wide, and 2.2 

m high.  The layout of the ATC is shown in Figure 5. 

Particle size concentration measurements were made using either a TSI 

Aerodynamic Particle Sizer (APS), model number 3321, or a TSI Ultraviolet 

Aerodynamic Particle Sizer (UV-APS), model number 3314.  Two or three APSs were in 

the ATC, one to monitor the ATC particle concentration and the others to monitor the 

particle concentration of the XMX secondary flow.  The XMX was placed on a metal  
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stand in the ATC. The test aerosol inlet was located approximately 0.9 m from the inlet of 

the APS monitoring the ATC particle concentration, 1.4 m from the inlet of the XMX, 

and 0.7 m from the double doors of the ATC.  The inlets of the APS monitoring the ATC 

particle concentration and the XMX were both at a vertical height of approximately 1.7 m 

above the ATC floor.  The ATC was equipped with two circulating fans for aerosol 

mixing.  

 

Test Aerosol Generation 

Two separate aerosol generation systems were used to generate the test aerosols 

used during this study.  A polydisperse Arizona Road Dust (ARD) aerosol was used to 

evaluate the performance of the XMX virtual impactor, and two different PSL sphere 

XMX
APS

APS

FAN

Double 

Doors

FAN

Aerosol

Inlet

Figure 5: Aerosol test chamber layout 
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aerosols were used to evaluate the performance of collection media.  The ARD test 

aerosol generating system is shown in Figure 6.  The polydisperse ARD aerosol, named 

test aerosol 1 (TA1), manufactured by Powder Technology, Inc., was nominally 

categorized to generate aerosols with 95% of the total particle mass attributable to 

particles from 5 to 10 µm in size.  The ARD was loaded into a model Wright Dust Feeder 

(WDF) Mark II, manufactured by BGI, Inc.  The WDF was supplied by dried, 

compressed air at 40 pounds per square inch (psi) by a Compressed Air Dryer, 

manufactured by Wilkerson, Inc.  The speed of the WDF was adjusted between 0.03 and  

 

Figure 6: Arizona Road Dust aerosol generation system 
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0.04 revolutions per minute (rpm) throughout the experiment to simultaneously maintain 

a nominally consistent particle concentration distribution in the ATC and prevent  

saturation of either APS, which could lead to erroneous particle concentration 

measurements.  The aerosol generated by the WDF was passed through a model 3054 

Krypton-85 charge neutralizer, manufactured by TSI, Inc., to neutralize excess the charge 

of ARD particles.  The ARD test aerosol was then injected into the ATC via the aerosol 

inlet in the ceiling of the ATC. 

Two different fluorescent PSL (FPSL) sphere aerosols were used in this study, 

with one aerosol, named test aerosol 2 (TA2), containing 1.0 µm blue and 3.1 µm green 

FPSL spheres, and the other, named test aerosol 3 (TA3), containing 0.70 µm blue and 

1.9 µm green FPSL spheres.  All FPSL spheres were manufactured by Thermo Scientific, 

Inc., and product information for the FPSL spheres is presented in Table 3. 

Table 3: Fluorescent PSL sphere test aerosols 

Test aerosol Diameter (µm) Color Part number Lot number 

2 1.0 Blue B0100 35449 

2 3.1 Green G0300 34875 

3 0.7 Blue B700 37670 

3 1.9 Green G0200 37653 

 

Both FPSL sphere test aerosols were generated using the same system.  A model 

9306 Six-Jet Atomizer (SJA), manufactured by TSI, Inc., was filled with a liquid mixture 

of 50% ethanol and 50% deionized water.  The two different size and color FPSL spheres 

were added to the liquid mixture in the SJA using a pipette.  The aerosol generated by the 
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SJA was passed through a model 3062 Diffusion Dryer, manufactured by TSI, Inc., filled 

with silica gel dessicant to dry the PSL particles.  The FPSL test aerosols were then 

injected into the ATC via the aerosol inlet in the ceiling of the ATC. 

 

Equipment Preparation 

 Preparation of XMX Units. 

Five XMX units were made available for this study and three of these five XMX 

units were used to conduct the experimental work.  The canister components of the 

XMX, shown in Figure 7 (LaRoche, 2009), were dipped in water, air dried, wiped by 

paper towels to remove any remaining liquid, and then reassembled per manufacturer’s 

instructions.  Three flow rates were measured for each of the five XMX units: total 

(exhaust) flow, standard secondary (sampling) flow, and reduced secondary flow.  The 

total flow was measured using a HI-Q Flow Calibrator, model D-AFC-1100L-PRES,   

 

Figure 7: Components of XMX/2L-MIL virtual impaction module 

A - Primary inlet, B - Primary nozzle plate, C - Upper canister, D - Lower canister 

E - Final nozzle (LaRoche, 2009) 

 



 

45 

 

manufactured by HI-Q Environmental Products, Inc.  The flow calibrator was attached 

in-line to the exhaust port on the XMX, the XMX was turned on, and exhaust flow rate 

and temperature readings were recorded every 30 seconds for five minutes, for a total of 

ten actual flow rate readings.  The ten actual flow rate readings were converted to 

standard flow rate values by correcting for exhaust temperature, as the air is heated as it 

flows through the XMX blower immediately before being exhausted.  The standard 

secondary flow was measured using a DryCal Flow Calibrator, model Defender 520-H, 

manufactured by BIOS International Corp.  The DryCal Flow Calibrator was inserted in 

the vacuum pump line that draws the secondary flow through the XMX virtual impactor.  

A 50 mL sample collection tube was filled with 5 mL of water and inserted into the XMX 

liquid impinger module per manufacturer’s instruction. The vacuum pump line and liquid 

impinger module of an XMX are shown in the left image of Figure 8 and a sample 

collection tube installed in the liquid impinger module of an XMX is shown in the right 

image of Figure 8.  The XMX was turned on and flow rate measurements were recorded 

approximately every 30 seconds for approximately five minutes, for a total of ten flow 

rate readings.  The reduced secondary flow was measured exactly as the standard 

secondary flow, except that each XMX had its flow reducer inserted in the vacuum pump 

line upstream of the DryCal Flow Calibrator.  The flow reducer, provided by Dycor, is a 

critical orifice created by drilling a small hole length-wise through a brass cylinder that is 

approximately 5 mm in diameter and 25 mm long.   The flow reducer is designed to be 

inserted in the vacuum pump line between the liquid impinger module and the fluid trap 

and reduce the secondary flow from approximately 12 lpm to between 4 and 5 lpm  
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Figure 8: XMX impinger module with (right) and without (left) collection tube 

(Cooper, 2010) 

(Cooper, 2010).  The ambient temperature and pressure in the lab were 21.2 degrees 

Celsius and 100.5 kilo Pascals, respectively.  The DryCal flow calibrator automatically 

corrects for pressure; therefore, secondary flow rate measurements were not corrected for 

temperature or pressure. 

 

   Preparation of Collection Media. 

Two different collection media were used in this study: PBS solution and Remel 

M5.  PBS solution was selected because it is recommended by Dycor and is a preferred 

collection media for biological agents (Hermann, et al., 2006).  Remel M5 was selected 

as a potential alternative to PBS solution, which facilitates particle capture and retention 

performance comparison between PBS solution and Remel M5 at reduced secondary 

flow.  Cooper noted superior collection effectiveness of MS2 bacteriophage when 

operating the XMX at reduced secondary flow using Remel M5 collection media as 

compared to that found when operating the XMX at standard secondary flow using PBS 

solution collection media (Cooper, 2010).  Equivalent particle capture and retention 

performance of PBS solution and Remel M5 at reduced secondary flow would indicate 
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that the superior collection effectiveness noted by Cooper was due to superior 

maintenance of MS2 bacteriophage viability by Remel M5 as compared to that of PBS 

solution. 

The PBS solution was produced at the EPA laboratories by adding sodium 

chloride and sodium phosphate to distilled water.  Remel M5 collection media, lot 

number 846140, was purchased from Remel, Inc.  Remel M5 is a liquid media designed 

for the collection and transport of viruses.  Remel M5 contains vancomycin, amphotericin 

B, colistin, and protein stabilizers to support maintenance of viral agent viability.  Remel 

M5 is packaged in 3 mL vials containing glass beads.  Remel M5 was poured from the 

vials, while simultaneously straining the glass beads, into a glass beaker creating 50 mL 

lots.  Fifty microliters (µL) of Y-30 emulsion antifoaming agent, manufactured by Sigma 

Aldridge Company, was added to the 50 mL to reduce foaming of Remel M5 while 

operating the XMX during sample collection, as noted in previous studies conducted by 

USAFSAM (Cooper, 2010).  The PBS and Remel M5 solutions were transferred to 50 

mL conical collection tubes.  Each 50 mL collection tube received either 5 mL of PBS or 

Remel M5 solution.  Collection tubes were prepared for experimental sample collection 

using this procedure. 

  

Particle Concentration Ratio Experimental Data Collection 

Three XMX samplers (referred to as: XMX1, XMX2, and XMX3) had their 

concentration ratios as a function of particle size determined at two secondary flow rates, 

5 and 10 lpm.  XMX1 was placed in the ATC.  No collection tube was installed in the 

liquid impinger module.  Instead, a special connector and a piece of Tygon tubing 
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approximately 0.5 m long were attached to the liquid impinger tube, as shown in Figure 

9, and the other end of the tube was attached to the inlet of an APS (referred to as: 

APS1), as shown in Figure 10.  APS1 substituted for XMX1’s vacuum pump as the 

generation source of the secondary flow.  APS1 then simultaneously drew a flow of 5 

lpm of sampling air through XMX1’s virtual impactor and measured the particle 

concentration of the secondary flow as a function of particle diameter.  A test aerosol of 

ARD, TA1, was lofted in the ATC and maintained at a relatively constant particle 

concentration distribution.  The chamber ARD particle concentration as a function of 

particle diameter was measured by a second APS, APS2.  XMX1 was operated for 

  

 

Figure 9: Special connector and tubing connected to liquid impinger tube 
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Figure 10: Tubing connecting liquid impinger tube to aerodynamic particle sizer 

 

100 minutes and a total of 20 pairs of samples, each five minutes in duration, were 

simultaneously collected by APS1 and APS2.  This process was then repeated with 

XMX2 and XMX3. 

Next, the 0.5 m long tube and special connector connecting APS1 and the liquid 

impinger tube of XMX3 were replaced by a 0.2 m long piece of Tygon tubing with a 

special connector attached to a one-to-four flow splitter, as shown in Figure 11.  APS1  
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Figure 11: Tubing connecting liquid impinger tube to one-to-four flow splitter 

 

was moved approximately 0.5 m from its original location on the ATC floor, and another 

APS, APS3, was brought into the ATC and positioned on the floor approximately 1.0 m 

from APS1.  The inlets of APS1 and APS3 were then connected to opposite legs of the 

one-to-four splitter with conductive silicon tubing, as shown in Figure 12, and the 

remaining two legs of the one-to-four splitter were capped, as shown in Figure 13.  APS1 

and APS3 substituted for XMX3’s vacuum pump as the generation source of the 

secondary flow.  APS1 and APS3 simultaneously drew a combined flow of 10 lpm of 

sampling air through the virtual impactor and measured the particle concentration of the  
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Figure 12: Tubing connecting two branches of one-to-four flow splitter to two aerodynamic particle 

sizers 

 

secondary flow as a function of particle diameter.  TA1 was lofted in the ATC and 

maintained at a relatively constant particle concentration distribution.  The chamber ARD   

particle concentration as a function of particle diameter was measured by APS2.  XMX3 

was operated for 100 minutes, and a total of 20 sets of samples, each five minutes in 

duration, were simultaneously collected by APS1, APS3, and APS2.  This process was 

then repeated with XMX1 and XMX2. 
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Figure 13: Two branches of one-to-four flow splitter capped 

 

Collection Media Particle Capture and Retention Experimental Data Collection 

 Three XMX samplers, XMX1, XMX2, and XMX3, were used to evaluate the 

capture and retention of four sizes of FPSL spheres in two different collection media, 

PBS solution and Remel M5.  This evaluation was made at two different secondary flow 

rates: ‘standard’, approximately 15 lpm, and ‘reduced’, approximately 5 lpm.  XMX1 

was placed in the ATC; APS1, APS2, and APS3 were removed from the ATC; and a UV-

APS, APS4, was placed in the ATC, as shown in Figure 14.  The UV-APS measures 

particle size just as an APS does; however, it also measures the intensity and color of  
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Figure 14: Ultra-violet aerodynamic particle sizer with black inlet tubing 

 

fluorescent light emitted by the particles.  Therefore, the UV-APS simultaneously can 

discriminate particles both by size and fluorescent light they emit.  A test aerosol, TA2, 

of two sizes and colors of FPSL spheres was lofted in the ATC and maintained at a  

relatively constant particle concentration distribution.  The ATC aerosol concentration as 

a function of particle diameter and emitted fluorescent light intensity was measured by 

APS4.  XMX1 was operated with its flow secondary flow reducer installed.  A collection 

tube with 5 mL of PBS solution collection media was installed in the liquid impinger 

module.  XMX1 and APS4 were operated simultaneously for a five minute sampling 
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period.  The collection tube was removed from the liquid impinger module and 

immediately capped.  A second collection tube with 5 mL of PBS solution collection 

media was installed in the liquid impinger module and XMX1 and APS4 were 

 again operated simultaneously for a five minute sampling period.  This process was 

repeated eight more times so that a total of ten samples, each five minutes in duration 

were collected.  Following the collection of ten samples using PBS solution as the 

collection media, this process was repeated ten times with the only change being that the 

collection tube was filled with 5 mL of Remel M5 collection media.  Afterwards, the 

secondary flow reducer was removed.  Ten samples were collected using 5 mL of PBS 

solution as collection media.  This process was then repeated with XMX2 and XMX3. 

After collecting 30 samples with XMX3, XMX3 was removed from the ATC and 

XMX1 was placed in the ATC.  A test aerosol of two sizes and colors of FPSL spheres, 

TA3, was lofted in the ATC and maintained at a relatively constant particle concentration 

distribution.  The ATC aerosol concentration as a function of particle diameter and 

emitted fluorescent light intensity was measured by APS4.  XMX1 was operated with its 

secondary flow reducer installed.  A collection tube with 5 mL of PBS solution collection 

media was installed in the liquid impinger module.  XMX1 and APS4 were operated 

simultaneously for a five minute sampling period.  The collection tube was removed from 

the liquid impinger module and immediately capped.  A second collection tube with 5 

mL of PBS solution collection media was installed in the liquid impinger module, and 

XMX1 and APS4 were again operated simultaneously for a five minute sampling period.  

This process was repeated eight more times so that a total of ten samples, each five 
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minutes in duration were collected.  Following the collection of ten samples using PBS 

solution as the collection media, this process was repeated ten times with the only change 

being that the collection tube was filled with 5 mL of Remel M5 collection media.  

Following the collection of ten samples using Remel M5 as the collection media, the 

secondary flow reducer was removed.  Ten samples were collected using 5 mL of PBS 

solution as collection media.  This process was then repeated with XMX2 and XMX3.  In 

total, 180 samples were collected using XMX1, XMX2, and XMX3 for two different 

FPSL aerosols at two different secondary flow rates.  A summary of the sampling 

collection performed for the evaluation of particle capture and retention is presented in 

Table 4.   

 
Table 4: Summary of the sampling collection performed for the evaluation of particle capture and 

retention in collection media 

XMX Secondary flow rate Collection media Test aerosol # of samples 

XMX1 Reduced PBS solution TA2 10 

XMX1 Reduced Remel M5 TA2 10 

XMX1 Standard PBS solution TA2 10 

XMX1 Reduced PBS solution TA3 10 

XMX1 Reduced Remel M5 TA3 10 

XMX1 Standard PBS solution TA3 10 

XMX2 Reduced PBS solution TA2 10 

XMX2 Reduced Remel M5 TA2 10 

XMX2 Standard PBS solution TA2 10 

XMX2 Reduced PBS solution TA3 10 

XMX2 Reduced Remel M5 TA3 10 

XMX2 Standard PBS solution TA3 10 

XMX3 Reduced PBS solution TA2 10 

XMX3 Reduced Remel M5 TA2 10 

XMX3 Standard PBS solution TA2 10 

XMX3 Reduced PBS solution TA3 10 

XMX3 Reduced Remel M5 TA3 10 

XMX3 Standard PBS solution TA3 10 
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Fluorometric Calibration Curves 

 The performance of PBS solution and Remel M5 collection media to capture and 

retain aerosol particles during a five minute sampling period was measured.  In order to 

evaluate the performance of collection media to capture and retain aerosol particles, a 

method had to be developed to measure the number of particles in liquid collection 

media.  Fluorometry was selected as the method employed to measure the number of 

particles in liquid collection media.  Fluorometry is a type of electro-magnetic  

spectroscopy in which fluorescent light emanating from a sample is analyzed.  The 

intensity of the emanating fluorescent light is proportional to the amount of fluorescing 

material in the liquid media.  Fluorescent PSL (FPSL) spheres were chosen as test aerosol 

particles because the number of FPSL spheres captured and retained in the collection 

media could be measured by fluorometric analysis. 

 Four sizes of FPSL spheres were chosen for this experimental study, ranging from 

0.7 to 3.1 micrometers in diameter (Table 3).  These four sizes were chosen for three 

primary reasons: they fall within or near the 1.0 to 10 µm range over which the XMX 

virtual impactor is designed to concentrate particles into the secondary flow; permit 

evaluation of collection media performance for submicron particles; and all may be 

readily aerosolized by the SJA.  Since the FPSL spheres are aerosolized in pairs of 

different size and color, fluorometric analysis can distinguish between particles of 

different sizes when present together in the same collection media. 

 Stock samples of known concentrations were prepared for each of the four FPSL 

spheres.  These stock samples were then added to measured amounts of each collection 
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media to create a volume of collection media with known concentrations of two sizes of 

FPSL spheres to create calibration standards.  These calibration standards were analyzed 

using a Fluorometer, model Fluorolog-3, manufactured by HORIBA Jobin Yvon, and 

fluorescent intensities were recorded for each calibration standard.  Linear calibration 

equations were determined to express the concentrations for each size FPSL sphere in 

PBS solution or Remel M5 collection media.  The calibration concentration ranges for 

each FPSL sphere and collection media combination evaluated are presented in Table 5.  

The calibration plots are presented in Appendix B. 

Table 5: Calibration concentration ranges for fluorescent PSL spheres in collection media 

Test 

aerosol 

Diameter 

(µm) 

Color Lowest concentration 

(number per mL) 

Highest concentration 

(number per mL) 

2 1.0 Blue 12,500 2,275,000 

2 3.1 Green 1,250 201,500 

3 0.7 Blue 1,250 500,000 

3 1.9 Green 1,250 500,000 

   

 

Microscopic Analysis 

 Fluorometric analysis of collection media was used to measure the concentration 

of FPSL spheres captured and retained in the collection media during a five minute 

sample collection period.  While fluorometry is an accepted, accurate, and relatively fast 

method for measuring FPSL sphere concentration in collection media, it can provide no 

qualitative information regarding the condition of the FPSL spheres that are captured and 

retained in the collection media.  Therefore, microscopic analysis was performed on 10% 

of the samples collected to assess two characteristics: the occurrence of physical 

alteration of FPSL spheres due to sample collection and the feasibility of determining 

FPSL concentration in collection media by microscopic counting technique. 
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Microscopic analysis of FPSL spheres was performed using an Axioskop 

microscope, manufactured by Carl Zeiss International.  The Axioskop was equipped with 

a set of optical filters to enable independent viewing of individual colors, wavelengths, of 

light.  Stock samples of the four FPSL spheres were microscopically examined to verify 

their morphology, fluorescent characteristic, and relative sizes.  The Axioskop optical 

filter set did not permit independent viewing of fluorescing blue light, thereby rendering 

definitive microscopic analysis of blue FPSL spheres in collection media impossible.  

Therefore, only green FPSL spheres in collection media were microscopically assessed. 

One sample was randomly selected from each of the eighteen sets of ten samples 

noted in Table 4 for microscopic analysis.  Each randomly selected sample was processed 

by following the same procedure using the Axioskop, a vortexer, a micropipette, a Petroff 

Hausser Counting Chamber (PHCC) slide, and slide slip cover.  First, the PHCC slide 

was prepared using a stock sample of 3.1 µm green FPSL spheres and placed in the jig of 

the Axioskop that holds a slide in a fixed position.  The Axioskop was adjusted using the 

10X magnification lens until images of the FPSL spheres were in sharp focus when 

viewed by the camera of the Axioskop.  The Axioskop settings were then unchanged, so 

as to eliminate the need for adjustments during microscopic analysis of the eighteen 

selected samples. 

The PHCC slide and slide slip cover were cleaned with methanol and dried.  The 

sample collection tube was vortexed for 30 seconds, and a 10 µL aliquot of collection 

media was extracted from the collection tube using the micropipette.  The aliquot was 

ejected onto the PHCC slide, and the slip cover was placed onto the slide.  The slide slip 
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cover was slid slightly back and forth on the PHCC slide until no air bubbles were noted 

under the slide slip cover.  The PHCC slide was placed onto the Axioskop so that the cell 

of the PHCC slide was under the lens of the Axioskop.  The PHCC slide was moved 

slightly until several of the green FPSL spheres were seen and qualitatively evaluated for 

apparent physical alteration.  After completing qualitative evaluation of several green 

FPSL spheres, the PHCC slide was then positioned in the jig of the Axioskop.  A picture 

of the area being viewed was taken by the camera of the Axioskop.  The image file of the 

picture was opened, a 400 µm by 400 µm area of the image was randomly selected, and 

the number of green FPSL spheres in this area were counted and recorded.  The depth of 

the PHCC slide cell is 0.02 mm; therefore, the volume of collection media from which 

the number of green FPSL spheres was counted was 3.2 x 10
-6

 mL. 

 

Data Analysis 

Calculation of Virtual Impactor Concentration Ratio. 

 The concentration ratio (CR) of XMX virtual impactors was calculated using 

ARD particles over 42 size channels ranging from 0.542 to 10.37 µm at secondary flow 

rates of 5 and 10 lpm.  The CR was calculated by dividing the particle number 

concentration for each of the 42 size channels measured by an APS analyzing the air flow 

through the liquid impinger tube by the particle number concentration for each of the 42 

size channels measured by an APS analyzing the air inside the ATC.  The two APSs used 

to analyze the air flow through the liquid impinger tube and the air in the ATC were the 

same model; therefore, there was no need to apply any correction factors to any of the 

size channel data.  A two-way analysis of variance with several observations per cell was 
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performed on the calculated CR data for each particle size channel to evaluate the 

significance of secondary flow rate on the CR and inter-instrument XMX CR variability.  

The mean and standard deviation of the CR for each particle size channel were calculated 

using the data from all the XMXs, and the mean CR with upper and lower 89% 

confidence interval limits were plotted as a function of particle size for secondary flow 

rates of 5 and 10 lpm. 

Calculation of Capture and Retention of Particles in Collection Media. 

 The concentration of FPSL spheres in collection media was measured via 

fluorometric analysis.  The number of FPSL spheres captured and retained in collection 

media was calculated by multiplying the FPSL sphere concentration in collection media 

by the volume of collection media remaining in the collection tube after the five minute 

sample collection period.  The number of particles that flowed through the liquid 

impinger tube was calculated by multiplying together the particle concentration in the 

ATC, secondary flow rate, the CR for the FPSL sphere at the secondary flow rate, and the 

sampling time.  The particle capture and retention efficiency (CRE) was calculated by 

dividing the number of FPSL spheres captured and retained in the collection media by the 

number of particles that flowed through the liquid impinger tube.  Single factor ANOVA 

evaluations were performed to the calculated CRE data for each size of FPSL spheres to 

evaluate the significance of secondary flow rate and collection media on the CRE.  The 

distribution of the sample sets, which each contained 30 observations, were evaluated and 

normal approximation was found reasonable by application of the Central Limit Theorem 

(McClave, et al., 2008).        
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IV.  Results and Analysis 

 

XMX Volumetric Flow Rates 

 Three flow rates were measured for each of the five XMX units made available 

for this study: total flow, standard secondary flow, and reduced secondary flow.  Each of 

these flow rates were calculated by averaging ten measurements obtained during separate 

periods, approximately five minutes in duration, while operating an XMX.  Total flow 

measurements were corrected for temperature, as the exhaust flow temperature was 

significantly above standard normal temperature.  The results for total flow rate and 

secondary flow rate measurements are presented in Table 6 and Table 7, respectively.  

All measured XMX flow data are presented in Appendix C.  XMX1, XMX2, and XMX3 

were used to collect experimental data in the ATC and XMX4 and XMX5 were not.  The 

mean and standard deviation for the three flow rates were calculated for two groupings of 

XMXs, the three XMXs used to collect experimental data in the ATC and all five XMXs, 

and are presented in Table 8.  Using the data in Table 6, the standard deviation of the ten  

 
Table 6: Measured XMX total flow rates 

XMX Serial # Final exhaust 

temperature (°C)
 

Total flow rate (slpm) Standard deviation 

(slpm) 

XMX1 X2064 54.7 692 8 

XMX2 X2110 54.9 675 8 

XMX3 X2207 54.6 683 6 

XMX4 X2120 53.2 685 7 

XMX5 X2206 53.4 714 10 
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Table 7: Measured XMX secondary flow rates 

XMX Standard secondary 

flow rate (slpm) 

Standard 

deviation 

(slpm) 

Reduced secondary 

flow rate (slpm) 

Standard 

deviation 

(slpm) 

XMX1 16.017 0.032 5.3686 0.0493 

XMX2 15.940 0.048 4.8439 0.0213 

XMX3 15.071 0.084 4.8052 0.0493 

XMX4 14.749 0.116 6.2851 0.0368 

XMX5 12.333 0.078 4.5740 0.0185 

 

 
Table 8: Measured average flow rates for two groupings of XMXs 

XMX 

group 

Average total 

flow rate 

(slpm) 

Standard 

deviation 

(slpm) 

Average 

standard 

secondary 

flow rate 

(slpm) 

Standard 

deviation 

(slpm) 

Average 

reduced 

secondary 

flow rate 

(slpm) 

Standard 

deviation 

(slpm) 

XMX: 

1-3 

683 9 15.676 0.525 5.0059 0.3147 

XMX: 

1-5 

690 15 14.822 1.495 5.1754 0.6851 

 

measurements for each of the five XMXs total flow rate ranged from 0.9% for XMX3  to 

1.4% for XMX5 of the total flow rate.   Using the data presented in Table 7, the standard 

deviation of the ten measurements for each of the five XMXs standard secondary flow 

rate ranged from 0.2% for XMX1 to 0.8% for XMX4 of the standard secondary flow rate, 

and the standard deviation of the ten measurements for each of the five XMXs reduced 
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secondary flow rate ranged from 0.4% for XMX5 to 1.0% for XMX3 of the reduced 

secondary flow rate.  Therefore, the variability of the three flow rates measured for the 

five XMXs, from least to greatest, are ordered: standard secondary flow rate, reduced 

secondary flow rate, and total flow rate.  Using the data presented in Table 8, the standard 

deviation of the total flow rate, standard secondary flow rate, and reduced secondary flow 

rate for the group of XMX1, XMX2, and XMX3, were 1.3%, 3.3%, and 6.3% of their 

corresponding average flow rates, respectively, and the standard deviation of the total 

flow rate, standard secondary flow rate, and reduced secondary flow rate for the group of 

all five XMXs were 2.2%, 10.1%, and 13.2% of their corresponding average flow rates, 

respectively.  Therefore, the variability of the three flow rates measured for the two 

groups of XMXs was lower for the group of three XMXs used to collect experimental 

data in the ATC than it was for the group of all five XMXs made available for the study. 

 Dycor reports that the XMX total flow rate, standard secondary flow rate, and 

reduced secondary flow rate are 800 lpm, 12 lpm, and between 4 lpm and 5 lpm, 

respectively.  Using the data presented in Table 6, Table 7, and the three Dycor reported 

flow rates, small-sample hypothesis two-tailed t-tests about population means were 

performed at a 0.02 level of significance to evaluate hypotheses regarding the three XMX 

flow rates.  Results of these hypotheses tests are presented in Table 9.  The null 

hypotheses for the total flow rate and standard secondary flow rate were rejected, and the 

null hypothesis for the reduced secondary flow rate was not rejected, indicating 

significant differences in the reported and experimentally measured total and standard 

secondary flow rates. 
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Table 9: Hypotheses test results for the three XMX flow rates 

Test performed Null 

hypothesis 

Alternate 

hypothesis 

Rejection 

region: t0.01 

Test 

statistic: t 

Result 

Total flow rate µ = 800 lpm µ ≠ 800 lpm 3.747 -16.625 Reject null 

hypothesis 

Standard 

secondary flow 

rate 

µ = 12 lpm µ ≠ 12 lpm 3.747 4.221 Reject null 

hypothesis 

Reduced 

secondary flow 

rate 

µ = 4.5 lpm µ ≠ 4.5 lpm 3.747 2.204 Do not reject 

null 

hypothesis 

 

Virtual Impactor Concentration Ratio as a Function of Particle Size and Secondary 

Flow Rate 

 

 The concentration ratio (CR) of the virtual impactors of three XMXs was 

determined.  The CR was determined by dividing the particle concentration distribution 

data for 42 size channels ranging from 0.542 µm to 10.37 µm, measured by an APS 

monitoring the ambient air inside the ATC, by the particle concentration data, for the 

same 42 size channels, simultaneously measured by another APS monitoring the air of 

the secondary flow exiting the XMX impinger tube.  The 42 size channels were 

logarithmically positioned across the size range, with the size listed for each channel 

being at the logarithmic center of each individual size channel.  CRs were determined for 

secondary flow rates of 5 lpm and 10 lpm.  Twenty pairs of samples were collected by the 

two APSs for each of the six experimental combinations produced by the three XMXs 

and two secondary flow rates, which were then used to determine the CRs for each of the 

42 size channels.  Thus, a total of 5,040 CR data points were determined, due to the APSs 

having collected 20 samples, each having data for 42 size channels, for each of the six 

experimental combinations of XMX and secondary flow rate. 
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A two-way analysis of variance (ANOVA) with several observations per cell was 

performed on the data for each of the 42 size channels as the CR varies significantly as a 

function of particle size (Tucker, 2005).  These 42 ANOVA evaluations were performed 

using Excel® 2007 software, produced by Microsoft Corporation.  For these 42 ANOVA 

evaluations, the CR was the dependent variable, the XMXs were three groups, the 

secondary flow rates were two blocks, and an interaction between XMX and secondary 

flow rate was considered.  The F ratios for variations between groups, XMXs, blocks, 

secondary flow rates, and the interaction between groups and blocks, XMXs and 

secondary flow rates, were calculated and compared to their respective critical F ratio 

values for a 0.025 level of significance, all of which are presented in Table 10.  General 

summary tables for the 42 ANOVA evaluations are presented in Appendix D.  For all 42 

size channels, the variation between XMXs, secondary flow rates, and interaction of 

XMXs and secondary flow rates were found to be significant.  Results for hypotheses 

tests regarding secondary flow rate and inter-XMX variability are presented in Table 11.  

The null hypotheses for secondary flow rate and inter-XMX variability were rejected, 

indicating significant inter-instrument variability and significant difference in CR for 

secondary flow rates of 5 and 10 lpm.  
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Table 10: Results of two-way ANOVA evaluations on XMX concentration ratio by XMX, secondary 

flow rate, and XMX/secondary flow rate interaction for 42 aerodynamic diameter size channels 

Size channel 

(µm) 

XMX Secondary rate 

flow 

Interaction 

 F-ratio F-critical F-ratio F-critical F-ratio F-critical 

0.542 94.01 3.83 844.2 5.18 83.49 3.83 

0.583 97.79 3.83 865.8 5.18 73.79 3.83 

0.626 103.4 3.83 920.7 5.18 51.82 3.83 

0.673 97.01 3.83 998.7 5.18 40.66 3.83 

0.723 89.88 3.83 1155 5.18 39.97 3.83 

0.777 93.25 3.83 1385 5.18 38.63 3.83 

0.835 93.95 3.83 1818 5.18 40.71 3.83 

0.898 75.57 3.83 1808 5.18 37.25 3.83 

0.965 85.22 3.83 2173 5.18 35.91 3.83 

1.037 63.87 3.83 2050 5.18 30.48 3.83 

1.114 91.40 3.83 2911 5.18 39.31 3.83 

1.197 95.57 3.83 3617 5.18 47.77 3.83 

1.286 110.5 3.83 3384 5.18 54.05 3.83 

1.382 161.4 3.83 4117 5.18 76.29 3.83 

1.486 115.1 3.83 4011 5.18 60.32 3.83 

1.596 116.7 3.83 3329 5.18 56.23 3.83 

1.715 91.82 3.83 2783 5.18 49.42 3.83 

1.843 85.18 3.83 1982 5.18 33.89 3.83 

1.981 87.62 3.83 2240 5.18 21.26 3.83 

2.129 61.98 3.83 1829 5.18 31.03 3.83 

2.288 61.41 3.83 1685 5.18 27.26 3.83 

2.458 31.99 3.83 973.6 5.18 16.09 3.83 

2.642 27.43 3.83 517.1 5.18 13.85 3.83 

2.839 25.39 3.83 349.2 5.18 9.45 3.83 

3.051 23.78 3.83 482.1 5.18 6.90 3.83 

3.278 12.45 3.83 237.0 5.18 4.00 3.83 

3.523 21.28 3.83 365.7 5.18 9.52 3.83 

3.786 19.10 3.83 181.2 5.18 11.81 3.83 

4.068 21.36 3.83 226.4 5.18 17.68 3.83 

4.371 62.68 3.83 685.0 5.18 67.06 3.83 

4.698 168.4 3.83 1853 5.18 190.0 3.83 

5.048 72.39 3.83 729.0 5.18 76.43 3.83 

5.425 49.94 3.83 471.7 5.18 54.94 3.83 

5.829 67.68 3.83 899.8 5.18 106.5 3.83 

6.264 27.11 3.83 237.5 5.18 30.02 3.83 

6.732 51.86 3.83 472.5 5.18 71.94 3.83 

7.234 26.96 3.83 251.1 5.18 30.45 3.83 

7.774 21.58 3.83 195.3 5.18 18.26 3.83 

8.354 18.66 3.83 241.7 5.18 16.66 3.83 

8.977 9.27 3.83 96.67 5.18 7.96 3.83 

9.647 4.69 3.83 29.94 5.18 4.30 3.83 

10.37 6.15 3.83 128.8 5.18 7.05 3.83 
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Table 11: Hypotheses test results for secondary flow rate and XMX inter-instrument variability 

Test performed Null 

hypothesis 

Alternate 

hypothesis 

Rejection 

region:  

F critical 

Test 

statistic: F 

ratio 

Result 

Compared CRs 

for different 

secondary flow 

rates 

CR at 5 lpm  

equal to   

CR at 10 lpm 

CR at 5 lpm   

not equal to   

CR at 10 lpm 

5.18 Min: 29.94 

Max: 4,117 

Ave:1,322     

Reject null 

hypothesis 

Compared CRs 

for three XMXs 

CR XMX1 

equal to 

CR XMX2 

equal to 

CR XMX3 

CRs not equal 

for all three 

XMXs 

3.83 Min: 4.69 

Max: 168.4 

Ave: 65.30     

Reject null 

hypothesis 

 

To gain a greater understanding of the nature and impact of the variability of the 

CR between XMXs, these data points were evaluated using JMP® statistical discovery 

software, version 8.0, produced by SAS Institute, Inc.  The CR was the dependent 

variable and was coded as a continuous numeric variable.  XMX was an independent 

variable and was coded as a nominal numeric variable and assigned a value of 1, 2, or 3, 

corresponding to XMX1, XMX2, and XMX3, respectively.  Secondary flow rate was an 

independent variable and was coded as a continuous numeric dummy variable and 

assigned a value of 0 or 1, corresponding to 10 lpm or 5 lpm, respectively.  Size channel 

was an independent variable and was coded as a nominal numeric variable and took on 

the value of the logarithmic center point of the size channel being represented.  A two-

way ANOVA was performed on the data, treating size channel as a fixed effect with 42 

blocks, secondary flow rate as a fixed effect with two groups, and XMX as a random 

effect.   The percentage of the model total error due to XMX and residuals for each size 

channel are presented in Table 12 and average 43.32% and 56.68%, respectively. 
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Therefore, despite there being significant inter-instrument variability for the CR across 

the XMXs, the majority of the total error is due to random variability. 

 
Table 12: Percentage of total error due to XMX and residuals 

Size channel (µm) % of total error 

due to XMX 

% of total error 

due to residual 

0.542 48.59 51.41 

0.583 51.44 48.56 

0.626 57.49 42.51 

0.673 58.60 41.40 

0.723 56.88 43.12 

0.777 58.14 41.86 

0.835 57.79 42.21 

0.898 53.22 46.78 

0.965 56.62 43.38 

1.037 50.83 49.17 

1.114 57.47 42.53 

1.197 56.48 43.52 

1.286 58.63 41.37 

1.382 63.39 36.61 

1.486 58.29 41.71 

1.596 59.50 40.50 

1.715 55.08 44.92 

1.843 57.15 42.85 

1.981 61.49 38.51 

2.219 49.90 50.10 

2.288 50.78 49.22 

2.458 37.87 62.13 

2.642 34.92 65.08 

2.839 34.60 65.40 

3.051 33.94 66.06 

3.278 21.31 78.69 

3.523 30.50 69.50 

3.786 27.40 72.60 

4.068 28.05 71.95 

4.371 41.44 58.56 

4.698 49.08 50.92 

5.048 43.24 56.76 

5.425 38.35 61.65 

5.829 36.51 63.49 

6.264 29.91 70.09 

6.732 35.82 64.18 

7.234 29.68 70.33 

7.774 28.10 71.90 

8.354 25.51 74.49 

8.977 15.38 84.62 

9.647 8.50 91.50 

10.37 11.44 88.56 
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 The mean and standard deviation for all experimental CR data points for the three 

XMXs for each particle size channel at secondary flow rates of 5 lpm and 10 lpm were 

calculated.  Due to there being significant inter-instrument variability for the CR across 

the XMXs, 89% confidence intervals were constructed for the CR as a function of 

particle diameter using the calculated means and standard deviation and employing 

Chebyshev’s Rule (McClave, et al., 2008).  The mean, upper limit for 89% confidence 

interval (CI), and lower limit for 89% CI of the CR for all three XMXs as a function of 

particle size channel are plotted for secondary flow rates of 5 lpm and 10 lpm in Figure 

15 and Figure 16, respectively.  The mean CRs for XMXs used in this study for sub-

micrometer particles are presented in Table 13. 

 An analysis of the virtual impactor CR data at the two secondary flow rates tested 

suggest that the product of the secondary flow rate and the CR at each particle size might 

be a characteristic constant or predictable value.  The product of the secondary flow rate 

and mean CR for each particle size channel combination tested were plotted and are 

presented in Figure 17.  Single factor ANOVA evaluations were performed to compare 

values of this product for secondary flow rates of 5 lpm and 10 lpm over two sub-ranges 

of particle sizes, 0.542 µm to 1.486 µm and 5.048 µm to 10.37 µm, and the full range of 

particle sizes, 0.542 µm to 10.37 µm to obtain a cursory perspective on the possibility of 

such a relationship between secondary flow rate and CR.  The results of these ANOVA 

evaluations are presented in Table 14 and indicate that such a relationship should not be 

rejected based solely on a significance level of 0.05.   
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Figure 15: Mean concentration ratio as a function of particle size for all XMXs at secondary flow 

rate of 5 lpm 

 

   

Collection Media Particle Capture and Retention as a Function of Particle Size and 

Secondary Flow Rate 

 

The concentration of particles captured and retained in the collection media was 

measured using fluorometry for the samples collected for the secondary rates, collection 

media, and test aerosols listed in Table 4.  The capture and retention efficiency (CRE) for 

each sample was calculated by dividing the number of particles captured and retained in 

the collection media by the theoretical number of particles, based upon secondary flow 

rate, CR, and the particle concentration in the ATC, that passed through the liquid 

impinger and into the collection tube.  The average calculated CREs for the twelve 

combinations of sampling conditions are presented in Table 15.  Single factor ANOVA  
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Figure 16: Mean concentration ratio as a function of particle size for all XMXs at secondary flow 

rate of 10 lpm 

 

 
 

Table 13: Mean and standard deviation of CR for sub-micrometer particles 

Particle size (µm) Secondary flow rate (lpm) Mean CR Standard deviation 

0.542 5 5.65 1.03 

0.542 10 3.62 0.30 

0.583 5 6.44 1.15 

0.583 10 4.13 0.32 

0.626 5 8.06 1.36 

0.626 10 5.13 0.41 

0.673 5 10.1 1.6 

0.673 10 6.38 0.52 

0.723 5 12.8 1.9 

0.723 10 7.84 0.63 

0.777 5 15.7 2.3 

0.777 10 8.94 0.88 

0.835 5 18.5 2.7 

0.835 10 9.78 1.02 

0.898 5 21.2 3.1 

0.898 10 10.5 1.2 

0.965 5 24.6 3.5 

0.965 10 11.3 1.5 
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Figure 17: Product of mean concentration ratio and secondary flow rate as a function of particle size  

 

 

Table 14: P-values for product of CR and secondary flow rate ANOVA comparison 

Particle size range P-value 

0.542 µm to 1.486 µm 0.573 

5.048 µm to 10.37 µm 0.140 

0.542 µm to 10.37 µm 0.074 

 

evaluations were performed to compare CREs and determine if there were significant 

differences in CRE due to collection media and secondary flow rate for each of the four 

sizes of particles tested.  General summary tables for these ANOVA evaluations are 

presented in Appendix E.  The results of these ANOVA evaluations are presented in 

Table 16.  Results for hypotheses tests regarding CRE regarding collection media and 

secondary flow rate for each particle size with a level of significance of 0.025 are 

presented in Table 17 and indicate that there are significant differences in the CREs of 

1.0, 1.9, and 3.1 µm FPSL spheres due to collection media, PBS solution compared to 
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Remel M5 collection media, and secondary flow rate, reduced compared to standard 

secondary flow rate. 

 

 

Table 15: CRE means for sampling condition combinations 

Collection 

media 

Secondary flow 

rate (lpm) 

Particle 

diameter (µm) 

Average CRE 

PBS solution Reduced 0.7 0.173 

PBS solution Standard 0.7 0.246 

Remel M5 Reduced 0.7 0.201 

PBS solution Reduced 1.0 0.059 

PBS solution Standard 1.0 0.108 

Remel M5 Reduced 1.0 0.080 

PBS solution Reduced 1.9 0.096 

PBS solution Standard 1.9 0.213 

Remel M5 Reduced 1.9 0.217 

PBS solution Reduced 3.1 0.623 
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Table 16: P-values for CRE ANOVA comparisons 

Particle 

diameter 

(µm) 

CRE comparison description P-value Factor associated with  

higher CRE 

0.7 PBS solution collection media with 

standard and reduced secondary 

flow rates 

0.0879 Standard secondary flow rate 

1.0 PBS solution collection media with 

standard and reduced secondary 

flow rates 

0.0104 Standard secondary flow rate 

1.9 PBS solution collection media with 

standard and reduced secondary 

flow rates 

<0.0001 Standard secondary flow rate 

3.1 PBS solution collection media with 

standard and reduced secondary 

flow rates 

<0.0001 Reduced secondary flow rate 

0.7 Reduced secondary flow rate with 

PBS solution and Remel M5 

0.8326 Remel M5 collection media 

1.0 Reduced secondary flow rate with 

PBS solution and Remel M5 

0.0072 Remel M5 collection media 

1.9 Reduced secondary flow rate with 

PBS solution and Remel M5 

<0.0001 Remel M5 collection media 

3.1 Reduced secondary flow rate with 

PBS solution and Remel M5 

<0.0001 PBS solution collection media 

 

 

 

 

 

 

 

 

 

 

 



 

75 

 

Table 17: Hypotheses test results for collection media performance at 0.025 level of significance 

Test performed Null 

hypothesis 

Alternate 

hypothesis 

P-value Result 

Measure CRE using 0.7 

µm FPSL sphere using 

PBS solution for reduced 

and standard secondary 

flow rates 

CREs equal CREs not equal 0.0879 Do not reject null 

hypothesis 

Measure CRE using 1.0 

µm FPSL sphere using 

PBS solution for reduced 

and standard secondary 

flow rates 

CREs equal CREs not equal 0.0104 Reject null 

hypothesis 

Measure CRE using 1.9 

µm FPSL sphere using 

PBS solution for reduced 

and standard secondary 

flow rates 

CREs equal CREs not equal <0.0001 Reject null 

hypothesis 

Measure CRE using 3.1 

µm FPSL sphere using 

PBS solution for reduced 

and standard secondary 

flow rates 

CREs equal CREs not equal <0.0001 Reject null 

hypothesis 

Measure CRE using 0.7 

µm FPSL spheres at 

reduced secondary flow 

rate using PBS solution 

and Remel M5 collection 

media 

CREs equal CREs not equal 0.8326 Do not reject null 

hypothesis 

Measure CRE using 1.0 

µm FPSL spheres at 

reduced secondary flow 

rate using PBS solution 

and Remel M5 collection 

media 

CREs equal CREs not equal 0.0072 Reject null 

hypothesis 

Measure CRE using 1.9 

µm FPSL spheres at 

reduced secondary flow 

rate using PBS solution 

and Remel M5 collection 

media 

CREs equal CREs not equal <0.0001 Reject null 

hypothesis 

Measure CRE using 3.1 

µm FPSL spheres at 

reduced secondary flow 

rate using PBS solution 

and Remel M5 collection 

media 

CREs equal CREs not equal <0.0001 Reject null 

hypothesis 
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Analysis of Virtual Impactor Concentration Ratio Variability 

 A potential source of virtual impactor CR variability was sought.  An evaluation 

of the XMX design and assembly instructions suggest that the orientation of the final 

nozzle could vary between XMXs following assembly.  Due to the gaps in the circular 

sidewall of the final nozzle, shown in Figure 7, and the flow of a portion of the total flow 

passing through these gaps as the flow is drawn by the main blower to the exhaust, 

differences in the flow patterns in the final nozzle could contribute to virtual impactor CR 

variability.  Overlay plots of the CR as a function of particle size channel for the 20 

individual samples for each of the three XMXs at secondary flow rates of 5 lpm and 10 

lpm were produced, presented in Appendix F, and evaluated to qualitatively investigate 

the CR variability of each XMX.  This qualitative investigation indicated that XMX1 

exhibited much greater CR variability at 5 lpm than either XMX2 or XMX3.  Similarly, 

this qualitative investigation indicated that XMX2 exhibited much greater CR variability 

at 10 lpm than either XMX1 or XMX3.  The XMXs were disassembled, cleaned, and 

reassembled between experimental data collection at 5 lpm and 10 lpm.  The orientation 

of the final nozzles during reassembly was neither controlled nor noted; therefore, 

differences in final nozzle orientation between the experimental data collection at 5 lpm 

and 10 lpm may have been a source of CR variability, with the final nozzle orientation of 

XMX1 at 5 lpm and that of XMX2 at 10 lpm being in orientations that lead to notable CR 

variability.   

The CRE data was quantitatively evaluated by using JMP® statistical discovery 

software to fit a full linear regression model with interactions to the CRE data to identify 
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the most important effects in CRE variability.  The CRE was the dependent variable and 

was coded as a continuous numeric variable.  XMX1 was an independent variable and 

was coded as a continuous numeric dummy variable and assigned a value of 1 or 0, 

corresponding to when the data record was for XMX1 or was not for XMX1, 

respectively.  A variable for XMX2 was coded similarly to the variable coded for XMX1.  

No variable was coded for XMX3; therefore, XMX3 was included in the model baseline.  

The secondary flow rate was an independent variable and coded as a continuous numeric 

dummy variable and assigned a value of 0 or 1, corresponding to when the data record 

was for standard secondary flow or reduced secondary flow, respectively; therefore, 

standard secondary flow was included in the model baseline.  The collection media was 

an independent variable and coded as a continuous numeric dummy variable and assigned 

a value of 0 or 1, corresponding to when the data record was for PBS solution or Remel 

M5 collection media, respectively; therefore, PBS solution was included in the model 

baseline.  Particle size was an independent variable and was coded as a nominal numeric 

variable and was assigned a value of 0.7 µm, 1.0 µm, 1.9 µm, or 3.1 µm corresponding to 

the particle size for the data record.  The particle size of the model baseline was 3.1 µm.  

The model was refined by removing effects, either single effects or interactions, as 

repeated model building revealed them as not being significant effects.  Seven effects 

were found to be significant in predicting CRE values and are presented with their 

corresponding P-values in Table 18.  No other model effects had P-values less than 0.05.  

These results are in agreement with CRE ANOVA comparisons and suggest the 

possibility that the final nozzle orientation of XMX1 may have been in a position leading 
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to notable CR variability as the XMXs were disassembled, cleaned, and reassembled 

between experimental data collection for FPSL sphere aerosols TA2 and TA3 (Table 3).     

 

Table 18: Significant effects for predicting CRE 

Model effect P-value 

XMX1 <0.0001 

Reduced secondary flow <0.0001 

Remel M5 <0.0001 

Particle size of 1.0 µm <0.0001 

Particle size of 1.9 µm <0.0001 

Interaction of reduced secondary flow and 

particle size 

<0.0001 

Interaction of Remel M5 and particle size <0.0001 

 

Microscopic Analyses of FPSL Spheres in Collection Media 

 Microscopic analysis was performed to determine the particle concentration in 

collection media for 10% of the samples noted in Table 4.  Due to the relatively low 

concentration of FPSL spheres captured and retained in the collection media and the 

protocol used in performing the microscopic concentration analysis, only three 

concentrations were observed: 0, 3.125 x 10
5
, and 6.25 x 10

5
, corresponding to the 

presence of either 0, 1, or 2 FPSL spheres in the 3.2 x 10
-6

 mL observation volume for the     

PHCC slide.   The average percent error and deviation between the FPSL particle 

concentrations determined by fluorometry and microscopy were 449% and 2.25 x 10
5
 

FPSL spheres per mL, respectively.  No physical alteration of 1.9 µm or 3.1 µm green 

FPSL spheres was observed while performing microscopic analysis.  Examples of the 

appearance of 1.9 µm and 3.1 µm green FPSL spheres as seen using the Axioskop 

microscope are shown in Figure 18 and Figure 19, respectively.  Particle size appears 
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larger in the images due to the abundance of fluorescent light emitted.  Due to the lack of 

the proper optical filter, observation of 0.7 µm and 1.0 µm blue FPSL spheres in collected 

samples was not possible. 

 

 

 

 

Figure 18: Appearance of 1.9 µm green FPSL spheres 
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Figure 19: Appearance of 3.1 µm green FPSL spheres 
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V. Discussion and Conclusions 

 

 

Discussion Overview 

This thesis evaluated the performance of the XMX high volume air sampler.  

Criteria evaluated included volumetric flow rates, virtual impactor CR, and the capture 

and retention of particles in two different collection media.  Overall limitations of this 

research included: the use of only ARD to determine the virtual impactor CR, the virtual 

impactor CR was determined for only two secondary flow rates, the size of the ATC did 

not permit simultaneously operating XMXs in parallel during experimental trials, the 

collection media were evaluated with only four sizes of FPSL spheres, and the 

microscopic evaluation could not be performed for the two smallest sizes of FPSL 

spheres that were used.         

 

Impact of Secondary Flow Rate on Virtual Impactor Performance 

This study demonstrated that virtual impactor CRs are significantly different for 

all 42 size channels evaluated (all p-values < 0.001) at secondary flow rates of 5 and 10 

lpm.  There are no known published studies regarding the effect of secondary flow rate 

on the XMX virtual impactor CR.  The data of this study suggest that the product of the 

secondary flow rate and the CR at each individual particle size might be a characteristic 

constant, or possibly a predictable value, of the XMX virtual impactor.  The CR is 

strongly a function of particle size and exhibits a characteristic tendency to have an 

intermediate minimum value for particles 6 µm in size for both secondary flow rates 

tested.  The CRs were shown to have their overall highest value range for particles 
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smaller than 5µm in diameter, overlapping with the respirable particle size range (Hinds, 

1999).  Further, the CRs averaged no less than approximately 10 for the XMX’s reported 

operating particle size range of 1.0 to 10 µm for both secondary flow rates tested.  The 

average CR for the three XMXs was found to not exceed 83% of the ratio of the total 

flow and secondary flow rates at a secondary flow rate of 5 lpm and to not exceed 67% of 

the same ratio at a secondary flow rate of 10 lpm.  Therefore, at least 17% and 33% of the 

particles ingested by the XMX would not flow through the impinger tube at secondary 

flow rates of 5 lpm and 10 lpm, respectively.  Further, the average CR typically did not 

exceed 43% of the ratio of the total flow and secondary flow rates at a secondary flow 

rate of 5 lpm and did not exceed 36% of the same ratio at 10 lpm.  Therefore, typically 

less than half of the particles of the polydispersed ARD aerosol ingested by the XMX 

flowed through the impinger tube at the secondary flow rates tested.  While Dycor does 

not claim that the XMX concentrates particles less than 1.0 µm in diameter in the 

secondary flow, this research showed the XMX does concentrate sub-micrometer 

particles in the secondary flow.  The mean CRs for XMXs used in this study for sub-

micrometer particles are presented in Table 13 and suggest that extending the accepted 

operating range for the XMX to as small as approximately 0.5 µm should be considered. 

This study found there was significant inter-instrument CR variability across the 

three XMXs evaluated for all 42 size channels evaluated (all p-values < 0.02).  However, 

the percent of total error due to inter-instrument variability was found to be slightly less 

on average than the percent of total error due to random variability.  The variability of the 
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CR was so significant that the ratio of the upper and lower limits of the 89% confidence 

intervals for secondary flow rates of 5 and 10 lpm exceeded 10 and 3, respectively, for 

the five minute sampling trials performed.  However, there might be a simple explanation 

for the high CR variability identified in this study.  Upon consideration of general fluid 

mechanics theory, aerosol particle characteristics, the design of the XMX, and the 

assembly instructions for the virtual impaction module, this study has formulated a 

hypothesis for a source of at least a notable portion of the significant inter-instrument CR 

variability.  This study hypothesizes that inconsistent positioning of the final nozzle when 

inserting it into the liquid impingement module (LIM) body during assembly is a source 

of CR variability.  The gaps in the circular sidewall of the final nozzle, shown in Figure 

7, permit a portion of the total flow previously separated at the first particle separation 

stage, to pass through the final nozzle as it is drawn by the main blower to the exhaust.  

The assembly instructions do not state that the final nozzle should be positioned in any 

specific manner when inserted into the LIM body; therefore, the location of the gaps in 

the final nozzle sidewall would tend to be in varying orientation to the portion of the total 

flow passing through the final nozzle, which would likely lead to substantially different 

flow patterns in the final nozzle, thereby possibly significantly altering the CR.  

Qualitative analysis of overlay plots of CR as a function of particle diameter for each 

XMX, presented in Appedix F, and the results of a fit model process of the CRE data 

suggest that final nozzle orientation should be considered as a potential source of 

significant virtual impactor CR variability. 
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Effects of Secondary Flow Rate and Collection Media on Capture and Retention of 

Particles 

 

 This study found that there was significant difference in CRE between reduced 

and standard secondary flow rate when using PBS solution as collection media for 1.0, 

1.9, and 3.1 µm FPSL spheres (p-values of 0.0104, <0.0001, and <0.001, respectively).  

However, while reduced secondary flow rate was associated with superior CRE 

performance for 3.1 µm FPSL spheres, standard secondary flow rate was associated with 

superior CRE performance for 1.0 and 1.9 µm FPSL spheres.  No significant difference 

in CRE was detected between reduced and standard secondary flow rates for 0.7 µm 

FPSL spheres when using PBS solution as collection media.  This CRE comparison 

between reduced and standard secondary flow rates could not be tested using Remel M5 

collection media due to excessive foaming of Remel M5 at the standard secondary flow 

rate. 

 This study found that there was significant difference in CRE between PBS 

solution and Remel M5 collection media when operating at reduced secondary flow rate 

for 1.0, 1.9, and 3.1 µm FPSL spheres (p-values of 0.0072, <0.0001, and <0.001, 

respectively).  However, while PBS solution was associated with superior CRE 

performance for 3.1 µm FPSL spheres, Remel M5 collection media was associated with 

superior CRE performance for 1.0 and 1.9 µm FPSL spheres.  No significant difference 

in CRE was detected between PBS solution and Remel M5 collection media for 0.7 µm 

FPSL spheres when operating at reduced secondary flow rate, indicating that Remel M5 

was no better than PBS solution at capturing and retaining 0.7 µm FPSL spheres, which 
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supports the work of Cooper that suggested that Remel M5 was superior in maintaining 

viral agent viability in sub-micrometer particles when operating the XMX at reduced 

secondary flow rate as compared to PBS solution (Cooper, 2010).  The CRE results for 

all four sizes of FPSL spheres were consistent with those of Grinshpun, who found that 

maximum reaerosolization occurred for 1.0 µm particles, due to their greater likelihood 

of being entrained in bubbles rising through the collection liquid, and increasingly 

diminished for particle sizes both smaller and larger than 1.0 µm when using an AGI-4 

liquid impinger (Grinshpun, et al., 1997).    

 

Implications of Measured XMX Flow Rates, Virtual Impactor Performance, and 

Collection Media Particle Capture and Retention on Sampling Protocols 

 

 This study found that the measured standard secondary flow rate was significantly 

different from the standard secondary flow rate reported by the XMX manufacturer (p-

value <0.01).  As has been already noted, there is large variation in CR based on 

secondary flow rate, significant inter-instrument variability in CR, and a wide range 

between the upper and lower limits of the 89% confidence interval for the XMX CRs.  

Taken together, these findings strongly suggest that it is not feasible to develop an 

accurate or precise air concentration LOD applicable to all XMXs when using an XMX 

to collect a sample; however, it may be possible to estimate acceptable air concentration 

LODs for individual XMXs.  Further, as there is such significant variability in XMX 

performance characteristics, basing command decisions upon the results obtained by 

analyzing a single sample may be unwise in cases when use or presence of a naturally 



 

86 

 

occurring biological agent is suspected, as the potential for a false negative analysis due 

solely to XMX performance variability could be high. 

 The CRE was found to be superior for FPSL spheres with sizes of 1.0 and 1.9 µm 

at the standard secondary flow rate, as compared to the reduced secondary flow rate, 

when using PBS solution as collection media, but the opposite was found for 3.1 µm 

FPSL spheres and no difference was detected for these sampling conditions for 0.7 µm 

FPSL spheres.  Additionally, the CRE was found to be superior for FPSL spheres with 

sizes of 1.0 and 1.9 µm when using Remel M5 collection media, as compared to PBS 

solution collection media, but the opposite was found for 3.1 µm FPSL spheres and no 

difference was detected for these sampling conditions for 0.7 µm FPSL spheres.  

Therefore, since no clear preference was indicated for selecting a single, optimal 

combination of secondary flow rate and collection media to ensure maximum CRE for all 

four FPSL sphere sizes tested and XMX performance varied to such a degree that single 

sample analysis appears unwise, the results of this study suggest that sampling protocols 

would likely be more effective if they were to include collecting at least three samples, 

one each at the reduced secondary flow rate using PBS solution and Remel M5 collection 

media and one at the standard secondary flow rate using PBS solution as collection media 

when responding to incidents involving an unknown biological agent.  If the 

characteristic constant or predictable value for the product of secondary flow rate and CR 

hypothesized in this study were to exist, then the number of particles at each particle size 

that flow through the liquid impinger tube would be the same for all secondary flow rates.  

Therefore, if such a characteristic constant or predictable value for the virtual impactor 
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were substantiated, then the secondary flow rate could be chosen to optimize the CRE for 

the particle size and selection media of interest. 

 

Recommendations 

Experimental Evaluation of Air Sampling Equipment. 

The AF acquires, maintains, and fields a variety of air sampling equipment to 

provide CBRN surveillance and detection capabilities.  The AF typically commissions 

governmental entities or contractors to write concept of operations, technical guidance 

reports, and field user manuals for air sampling equipment.  In the case of the XMX, it 

appears that the AF neither commissioned nor conducted any notable experimental 

evaluation of XMX air sampling performance until 2010 (Cooper, 2010).  The purpose of 

this research was to extend the work of Cooper and further explore CR and inter-

instrument variability of the XMX due to secondary flow rate and particle size and the 

variability of CRE due to secondary flow rate and collection media.  Future pre- and post-

acquisition evaluations of air sampling equipment should, whenever possible, include 

informed experimental evaluation of not only technical aspects highlighted by the 

manufacturer, but also include those technical aspects that experience suggests are likely 

relevant that have not been highlighted by the manufacturer. 

  Improved Field Air Sampling Protocols for the XMX and Limit of Detection. 

AF BE personnel currently operate the XMX at the standard secondary flow rate 

using distilled water or PBS solution and frequently base their occupational and 

environmental health site assessments (OEHSAs) upon the analytical results obtained 

from a single collected sample.  This study demonstrated significant differences in XMX 
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total and standard secondary flow rates, virtual impactor CR performance due to 

secondary flow rate and inter-instrument variability, and CRE due to secondary flow rate 

and collection media.  Field air sampling protocols for the XMX should require collecting 

and analyzing several air samples, ideally including repeat samples at all locations of 

interest, to provide superior, more conservative information from which improved 

OEHSAs can be based.  Considering only those factors experimentally evaluated by AF 

personnel in this study and that by Cooper, this study recommends revising air sampling 

protocols for the XMX so that at least three samples are collected and analyzed as 

follows: one sample at the standard secondary flow rate using PBS solution as collection 

media, one sample at reduced secondary flow rate using PBS solution as collection 

media, and one sample at reduced secondary flow rate using Remel M5 collection media 

(Cooper, 2010). 

The AF has documented air concentration limits of detection (LODs) for many 

chemical agent detection systems and has a keen interest in determining LODs for 

biological agent detection systems as well.  However, considering the significant 

differences and variability in XMX performance characteristics, this study found that it is 

not realistic to pursue determining an accurate and precise limit of detection for any 

sampling protocol using the XMX to collect an air sample.  Based upon the nature and 

degree of the virtual impactor CR and inter-instrument variability, particularly across 

particle sizes and secondary flow rates, this study suggests a reasonable approach to 

identifying a practical, actionable limit of detection when using the XMX to collect an air 

sample is to multiply an experimental determined limit of detection by a factor of 10 to 
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have greater confidence in making an OEHSA and better minimize the likelihood of a 

false negative test result.  Additionally, the results of this and future CRE experiments 

will be important in determining air concentration LODs.  This study recommends using 

FPSL spheres and fluorometry over microscopic methods to determine the concentration 

of collected aerosol particles in liquid media as microscopic methods are extremely time 

consuming and conducted on a far smaller portion of the sample than fluorometry.  

Microscopy should only be used if it is not possible to use fluorometric analysis to 

determine the concentration of FPSL spheres in liquid collection media or if qualitative 

evaluation of the particles in the collection media is desired. 

   

Future Research Opportunities 

Evaluation of Existing and Contemplated Air Sampling Equipment. 

The AF has purchased and fielded the DFU-1000 and Biocapture® 650, 

manufactured by ICX Technologies, Inc., and will likely contemplate acquiring 

additional air sampling equipment in the future.  The available performance literature for 

the DFU-1000, Biocapture® 650, and other air samplers under consideration should be 

reviewed by AF personnel with relevant technical knowledge and actual field experience 

so as to better insightfully identify gaps or potential shortcomings in manufacturer 

provided product information and charge those reviewers with proposing experimental 

work specifically designed to address perceived important knowledge gaps or evaluate 

those relevant performance characteristics for which experimental data and information is 

not yet available.  In particular, future investigation of virtual impactor CR at additional 

secondary flow rates could be used to verify the hypothesis of the existence of an XMX 
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virtual impactor performance constant or predictable value defined as the product of the 

CR ratio and secondary flow rate, and, if such a constant exists, to investigate if 

analogous constants exist for other virtual impactors with variable secondary flow rates.  

Additionally, future investigation is warranted to evaluate if the orientation of the final 

nozzle in the LIM body is a significant source of inter-instrument CR variability.  If final 

nozzle orientation is confirmed as a source of significant inter-instrument CR variability, 

then establishing a specific final nozzle orientation might reduce inter-instrument CR 

variability sufficiently such that acceptably accurate and precise air concentration LODs 

can be determined for air samples collected using the XMX.   

 Experimental Evaluation of Collection Media. 

This study evaluated the CRE performance of PBS solution at only standard and 

the reduced secondary flow rates, Remel M5 at only the reduced secondary flow rate, and 

for only four particle sizes.  Future experimental evaluation should be considered for PBS 

solution, Remel M5, other commercially available collection media, and additional novel 

collection media for additional particle sizes and secondary flow rates to attempt to 

identify optimal combinations of collection media and secondary flow rate to maximize 

CRE for specific particle sizes of interest.    

 

Conclusions 

This study evaluated the performance of the XMX virtual impactor and two 

collection media.  The metrics used to evaluate the performance of the virtual impactor 

and collection media were CR and CRE, respectively.  The virtual impactor CR was 

found to be significantly different for secondary flow rates of 5 lpm and 10 lpm.  
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Experimentally determined CRs were higher at a secondary flow rate of 5 lpm as 

compared to those at 10 lpm.  However, the CR at 5 lpm was shown to have far larger 

variability than at 10 lpm, which suggests there would be increased difficulty in 

determining and decreased accuracy and precision of air concentration LODs at lower as 

compared to higher secondary flow rates.  The experimental data suggest that the product 

of the secondary flow rate and CR might be a constant or predictable value for each 

particle size, which, if substantiated, could reduce the complexity of selecting an optimal 

secondary flow rate based upon particle sizes of interest.  Notable CRs were 

experimentally determined for particles between approximately of 0.5 and 1.0 µm, which 

suggests that extending the operational range of the XMX to sub-micrometer particles 

should be considered.   Additionally, this study hypothesized that inter-instrument CR 

variability is significantly affected by final nozzle orientation in the LIM body.  If inter-

instrument CR variability is reduced significantly, then determining accurate and precise 

air concentration LODs might be possible for air samples collected using the XMX.  If 

inter-instrument CR variability is not reduced, then this study recommends that any 

experimentally determined air concentration LODs be multiplied for a factor of 10 to 

better account for CR variability and improve confidence in OEHSAs based upon 

samples collected by the XMX.  However, the significant inter-instrument CR variability 

strongly indicates that when using the XMX, multiple samples should be collected and 

analyzed to minimize the risk of basing an OEHSA on a false negative test result.  

The CRE of FPSL spheres in collection media was found to vary significantly for 

1.0, 1.9, and 3.1 µm diameter FPSL spheres at reduced as compared to standard 
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secondary flow rate and for PBS solution as compared to Remel M5 collection media.    

No significant differences due to secondary flow rate or collection media were detected 

in CRE for 0.7 µm particles, which supports Cooper’s hypothesis that superior 

maintenance of MS2 bacteriophage viability was attributable to Remel M5 as compared 

to PBS solution collection media (Cooper, 2010).  For FPSL spheres 1.0 µm in diameter 

and larger, CREs were found to increase with particle size, with CREs being the largest 

for 3.1 µm FPSL spheres as compared to the other sizes, and were greater at reduced as 

compared to standard secondary flow rate when using PBS solution collection media.  

Additionally, CREs for 0.7 µm FPSL spheres were more than double those for 1.0 µm 

FPSL spheres for both secondary flow rates and collection media tested, in agreement 

with the results of Grinshpun (Grinshpun, et al., 1997).  Fluorometry is recommended 

over microscopy to determine the concentration of FPSL spheres in liquid collection 

media.  Lastly, the predicted number of particles captured and retained in collection 

media at each particle size is the product of the secondary flow rate, virtual impactor CR, 

and the collection media CRE for each particle size.  Therefore, minimum air 

concentration LODs should coincide with maximum values of the product of secondary 

flow rate, virtual impactor CR, and collection media CRE for particle sizes of interest.  
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Appendix A: Experimental Data Collection Schedule 

 

 
Table 19: Experimental data collection schedule 

Date Description Air samplers evaluated 

09-Sep-2010 Measure total flow rate XMX1, XMX2, XMX3, 

XMX4, XMX5 

10-Sep-2010 Measured standard secondary flow rate XMX1, XMX2, XMX4 

13-Sep-2010 Measured reduced secondary flow rate XMX2, XMX4 

13-Sep-2010 Performed 20 sampling runs for determining 

the virtual impactor CR ratio at a secondary 

flow rate of 5 lpm using TA1 

XMX1, XMX2, XMX3 

15-Sep-2010 Performed 30 sampling runs for determining 

the CRE using TA2 

XMX1 

16-Sep-2010 Measured reduced secondary flow rate XMX1, XMX3 

16-Sep-2010 Performed 30 sampling runs for determining 

the CRE using TA2 

XMX2, XMX3 

17-Sep-2010 Measured standard secondary flow rate XMX3 

17-Sep-2010 Performed 30 sampling runs for determining 

the CRE using TA3 

XMX1 

20-Sep-2010 Performed 30 sampling runs for determining 

the CRE using TA3 

XMX2, XMX3 

21-Sep-2010 Measure standard secondary flow rate XMX5 

21-Sep-2010 Measure reduced secondary flow rate XMX5 

23-Sep-2010 Performed 20 sampling runs for determining 

the virtual impactor CR ratio at a secondary 

flow rate of 10 lpm using TA1 

XMX1, XMX2, XMX3 
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Appendix B: Fluorometric Calibration Curves 

 

 

 

Figure 20: Fluorometric calibration curve for 3.1 µm green FPSL spheres in PBS solution 
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Figure 21: Fluorometric calibration curves for 1.0 µm blue FPSL spheres in PBS solution 
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Figure 22: Fluorometric calibration curve for 3.1 µm green FPSL spheres in Remel M5 
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Figure 23: Fluorometric calibration curves for 1.0 µm blue FPSL spheres in Remel M5 
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Figure 24: Fluorometric calibration curves for 1.9 µm green and 0.7 µm blue FPSL spheres in PBS 

solution 
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Figure 25: Fluorometric calibration curves for 1.9 µm green and 0.7 µm blue FPSL spheres in Remel 

M5 
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Appendix C: XMX Flow Rate Data 

 

 

Table 20: Flow rate data for XMX1

Reduced Standard

5.2933 5.36863 Ave 15.992 16.0168 Ave

5.3081 0.04925 Std Dev 16.017 0.032465 Std Dev

5.3368 16.031

5.3543 16.078

5.3601 15.974

5.3709 15.987

5.3792 16.002

5.4097 16.061

5.4314 16.012

5.4425 16.014

Exhaust deg R STP

749 558.1 0.949651 711.2883 692.3074 Ave

751 569.5 0.930641 698.9113 8.27754 Std Dev

755 575.2 0.921419 695.6711

758 578.5 0.916162 694.4512

758 581.1 0.912063 691.344

759 583.9 0.90769 688.9365

760 586 0.904437 687.372

760 587.6 0.901974 685.5003

762 589.1 0.899677 685.5542

762 590.4 0.897696 684.0447
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Table 21: Flow rate data for XMX2

Reduced Standard

4.8125 4.8439 Ave 16.013 15.9399 Ave

4.8231 0.021301 Std Dev 15.875 0.048414 Std Dev

4.8254 15.861

4.8335 15.896

4.8385 15.947

4.8431 15.945

4.8586 15.946

4.8567 15.961

4.8767 15.977

4.8709 15.978

Exhaust deg R STP

749 558.1 0.949651 711.2883 692.3074 Ave

751 569.5 0.930641 698.9113 8.27754 Std Dev

755 575.2 0.921419 695.6711

758 578.5 0.916162 694.4512

758 581.1 0.912063 691.344

759 583.9 0.90769 688.9365

760 586 0.904437 687.372

760 587.6 0.901974 685.5003

762 589.1 0.899677 685.5542

762 590.4 0.897696 684.0447
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Table 22: Flow rate data for XMX3 

Reduced Standard

4.7198 4.80516 Ave 14.908 15.0712 Ave

4.7489 0.049296 Std Dev 14.981 0.083964 Std Dev

4.8935 15.009

4.7824 15.05

4.7847 15.08

4.8035 15.112

4.8171 15.11

4.8279 15.137

4.8361 15.155

4.8377 15.17

Exhaust deg R STP

743 564.4 0.93905 697.7144 682.6965 Ave

746 577 0.918544 685.234 5.795104 Std Dev

748 581.6 0.911279 681.6369

752 584 0.907534 682.4658

755 585.3 0.905519 683.6665

754 586.8 0.903204 681.0157

755 587.9 0.901514 680.643

753 588.7 0.900289 677.9174

755 589.6 0.898915 678.6805

755 590.2 0.898001 677.9905
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Table 23: Flow rate data for XMX4 

Reduced Standard

6.2186 6.28507 Ave 14.528 14.7485 Ave

6.2178 0.036811 Std Dev 14.634 0.116 Std Dev

6.3033 14.651

6.2804 14.763

6.2862 14.696

6.3088 14.823

6.3021 14.833

6.3112 14.819

6.3109 14.859

6.3114 14.879

Exhaust deg R STP

745 561.8 0.943396 702.8302 684.7139 Ave

747 574.8 0.92206 688.7787 7.124551 Std Dev

749 579.2 0.915055 685.3764

751 581.6 0.911279 684.3707

753 583 0.909091 684.5455

751 584.2 0.907224 681.3249

752 584.2 0.907224 682.2321

752 586.1 0.904283 680.0205

753 588.9 0.899983 677.6872

754 587.7 0.901821 679.9728
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Table 24: Flow rate data for XMX5 

Reduced Standard

4.5392 4.574 Ave 12.239 12.3329 Ave

4.5579 0.018478 Std Dev 12.226 0.077765 Std Dev

4.5615 12.262

4.5617 12.317

4.5707 12.291

4.5939 12.345

4.5862 12.399

4.5894 12.398

4.588 12.403

4.5915 12.449

Exhaust deg R STP

772 554.3 0.956161 738.1562 713.7926 Ave

777 569.8 0.930151 722.7273 10.327 Std Dev

779 575.5 0.920938 717.4109

778 578.4 0.916321 712.8976

780 580.7 0.912692 711.8994

781 582 0.910653 711.2199

780 583.4 0.908468 708.6047

781 585.9 0.904591 706.4857

781 587.4 0.902281 704.6816

781 588.1 0.901207 703.8429
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Appendix D: General Summary Data for Concentration Ratio ANOVA Evaluations 

 

 

 

Table 25: General summary data for concentration ratio ANOVA evaluations 

Size 0.542 µm

Source DF SS MS F Fcond Fcrit P

XMX 2 27.42626 13.71313 94.00915 F2,114,0.025 3.83 <0.0001

Flow 1 123.1361 123.1361 844.1489 F1,114,0.025 5.18 <0.0001

Interaction 2 24.35679 12.1784 83.48793 F2,114,0.025 3.83 <0.0001

Error 114 16.6292 0.14587

Total 119 191.5484

F-XMX F-crit F-Flow F-crit F-Inter F-crit

94.01 3.83 844.2 5.18 83.49 3.83

Size 0.583 µm

Source DF SS MS F Fcond Fcrit P

XMX 2 36.26261 18.1313 97.793 F2,114,0.025 3.83 <0.0001

Flow 1 160.524 160.524 865.8023 F1,114,0.025 5.18 <0.0001

Interaction 2 27.36085 13.68042 73.78672 F2,114,0.025 3.83 <0.0001

Error 114 21.13616 0.185405

Total 119 245.2836

F-XMX F-crit F-Flow F-crit F-Inter F-crit

97.79 3.83 865.8 5.18 73.79 3.83

Size 0.626 µm

Source DF SS MS F Fcond Fcrit P

XMX 2 57.88129 28.94065 103.3694 F2,114,0.025 3.83 <0.0001

Flow 1 257.7632 257.7632 920.6713 F1,114,0.025 5.18 <0.0001

Interaction 2 29.01864 14.50932 51.82398 F2,114,0.025 3.83 <0.0001

Error 114 31.91693 0.279973

Total 119 376.58

F-XMX F-crit F-Flow F-crit F-Inter F-crit

103.4 3.83 920.7 5.18 51.82 3.83
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Size 0.673 µm

Source DF SS MS F Fcond Fcrit P

XMX 2 79.9369 39.96845 97.01128 F2,114,0.025 3.83 <0.0001

Flow 1 411.4485 411.4485 998.6663 F1,114,0.025 5.18 <0.0001

Interaction 2 33.50226 16.75113 40.65828 F2,114,0.025 3.83 <0.0001

Error 114 46.96777 0.411998

Total 119 571.8554

F-XMX F-crit F-Flow F-crit F-Inter F-crit

97.01 3.83 998.7 5.18 40.66 3.83

Size 0.723 µm

Source DF SS MS F Fcond Fcrit P

XMX 2 113.3472 56.6736 89.87726 F2,114,0.025 3.83 <0.0001

Flow 1 728.4541 728.4541 1155.237 F1,114,0.025 5.18 <0.0001

Interaction 2 50.41342 25.20671 39.9747 F2,114,0.025 3.83 <0.0001

Error 114 71.8846 0.630567

Total 119 964.0993

F-XMX F-crit F-Flow F-crit F-Inter F-crit

89.88 3.83 1155 5.18 39.97 3.83

Size 0.777 µm

Source DF SS MS F Fcond Fcrit P

XMX 2 182.7921 91.39606 93.24836 F2,114,0.025 3.83 <0.0001

Flow 1 1357.323 1357.323 1384.831 F1,114,0.025 5.18 <0.0001

Interaction 2 75.72103 37.86051 38.62782 F2,114,0.025 3.83 <0.0001

Error 114 111.7355 0.980136

Total 119 1727.571

F-XMX F-crit F-Flow F-crit F-Inter F-crit

93.25 3.83 1385 5.18 38.63 3.83

Size 0.835 µm

Source DF SS MS F Fcond Fcrit P

XMX 2 237.9634 118.9817 93.94655 F2,114,0.025 3.83 <0.0001

Flow 1 2302.932 2302.932 1818.368 F1,114,0.025 5.18 <0.0001

Interaction 2 103.1124 51.55619 40.70816 F2,114,0.025 3.83 <0.0001

Error 114 144.3791 1.266483

Total 119 2788.387

F-XMX F-crit F-Flow F-crit F-Inter F-crit

93.95 3.83 1818 5.18 40.71 3.83
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Size 0.898 µm

Source DF SS MS F Fcond Fcrit P

XMX 2 289.6889 144.8445 75.57376 F2,114,0.025 3.83 <0.0001

Flow 1 3464.705 3464.705 1807.738 F1,114,0.025 5.18 <0.0001

Interaction 2 142.7792 71.3896 37.2481 F2,114,0.025 3.83 <0.0001

Error 114 218.4921 1.916597

Total 119 4115.666

F-XMX F-crit F-Flow F-crit F-Inter F-crit

75.57 3.83 1808 5.18 37.25 3.83

Size 0.965 µm

Source DF SS MS F Fcond Fcrit P

XMX 2 418.0906 209.0453 85.22091 F2,114,0.025 3.83 <0.0001

Flow 1 5330.981 5330.981 2173.266 F1,114,0.025 5.18 <0.0001

Interaction 2 176.1905 88.09524 35.91354 F2,114,0.025 3.83 <0.0001

Error 114 279.6399 2.452981

Total 119 6204.902

F-XMX F-crit F-Flow F-crit F-Inter F-crit

85.22 3.83 2173 5.18 35.91 3.83

Size 1.037 µm

Source DF SS MS F Fcond Fcrit P

XMX 2 436.5772 218.2886 63.87101 F2,114,0.025 3.83 <0.0001

Flow 1 7007.599 7007.599 2050.416 F1,114,0.025 5.18 <0.0001

Interaction 2 208.3541 104.1771 30.48209 F2,114,0.025 3.83 <0.0001

Error 114 389.6118 3.417648

Total 119 8042.143

F-XMX F-crit F-Flow F-crit F-Inter F-crit

63.87 3.83 2050 5.18 30.48 3.83

Size 1.114 µm

Source DF SS MS F Fcond Fcrit P

XMX 2 624.585 312.2925 91.40102 F2,114,0.025 3.83 <0.0001

Flow 1 9945.411 9945.411 2910.799 F1,114,0.025 5.18 <0.0001

Interaction 2 268.6408 134.3204 39.31257 F2,114,0.025 3.83 <0.0001

Error 114 389.5071 3.416729

Total 119 11228.14

F-XMX F-crit F-Flow F-crit F-Inter F-crit

91.4 3.83 2911 5.18 39.31 3.83
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Size 1.197 µm

Source DF SS MS F Fcond Fcrit P

XMX 2 706.7984 353.3992 95.56916 F2,114,0.025 3.83 <0.0001

Flow 1 13373.59 13373.59 3616.598 F1,114,0.025 5.18 <0.0001

Interaction 2 353.3082 176.6541 47.77228 F2,114,0.025 3.83 <0.0001

Error 114 421.5534 3.697837

Total 119 14855.25

F-XMX F-crit F-Flow F-crit F-Inter F-crit

95.57 3.83 3617 5.18 47.77 3.83

Size 1.286 µm

Source DF SS MS F Fcond Fcrit P

XMX 2 1117.95 558.975 110.4694 F2,114,0.025 3.83 <0.0001

Flow 1 17122.95 17122.95 3383.985 F1,114,0.025 5.18 <0.0001

Interaction 2 546.9449 273.4725 54.04598 F2,114,0.025 3.83 <0.0001

Error 114 576.8396 5.059997

Total 119 19364.69

F-XMX F-crit F-Flow F-crit F-Inter F-crit

110.5 3.83 3384 5.18 54.05 3.83

Size 1.382 µm

Source DF SS MS F Fcond Fcrit P

XMX 2 1822.707 911.3534 161.4323 F2,114,0.025 3.83 <0.0001

Flow 1 23242.24 23242.24 4117.005 F1,114,0.025 5.18 <0.0001

Interaction 2 861.3527 430.6764 76.2877 F2,114,0.025 3.83 <0.0001

Error 114 643.5782 5.645423

Total 119 26569.87

F-XMX F-crit F-Flow F-crit F-Inter F-crit

161.4 3.83 4117 5.18 76.29 3.83

Size 1.486 µm

Source DF SS MS F Fcond Fcrit P

XMX 2 1703.57 851.7852 115.1032 F2,114,0.025 3.83 <0.0001

Flow 1 29682.67 29682.67 4011.071 F1,114,0.025 5.18 <0.0001

Interaction 2 892.7637 446.3818 60.32036 F2,114,0.025 3.83 <0.0001

Error 114 843.6211 7.400185

Total 119 33122.63

F-XMX F-crit F-Flow F-crit F-Inter F-crit

115.1 3.83 4011 5.18 60.32 3.83
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Size 1.596 µm

Source DF SS MS F Fcond Fcrit P

XMX 2 2633.185 1316.593 116.6932 F2,114,0.025 3.83 <0.0001

Flow 1 37559.64 37559.64 3329.013 F1,114,0.025 5.18 <0.0001

Interaction 2 1268.784 634.392 56.22789 F2,114,0.025 3.83 <0.0001

Error 114 1286.207 11.28251

Total 119 42747.81

F-XMX F-crit F-Flow F-crit F-Inter F-crit

116.7 3.83 3329 5.18 56.23 3.83

Size 1.715 µm

XMX 2 3007.065 1503.532 91.82051 F2,114,0.025 3.83 <0.0001

Flow 1 45569.14 45569.14 2782.901 F1,114,0.025 5.18 <0.0001

Interaction 2 1618.315 809.1577 49.41515 F2,114,0.025 3.83 <0.0001

Error 114 1866.715 16.37469

Total 119 52061.24

F-XMX F-crit F-Flow F-crit F-Inter F-crit

91.82 3.83 2783 5.18 49.42 3.83

Size 1.843 µm

Source DF SS MS F Fcond Fcrit P

XMX 2 5146.183 2573.091 85.17884 F2,114,0.025 3.83 <0.0001

Flow 1 59897.82 59897.82 1982.839 F1,114,0.025 5.18 <0.0001

Interaction 2 2047.479 1023.74 33.88957 F2,114,0.025 3.83 <0.0001

Error 114 3443.724 30.2081

Total 119 70535.21

F-XMX F-crit F-Flow F-crit F-Inter F-crit

85.18 3.83 1982 5.18 33.89 3.83

Size 1.981 µm

Source DF SS MS F Fcond Fcrit P

XMX 2 5112.712 2556.356 87.61945 F2,114,0.025 3.83 <0.0001

Flow 1 65344.65 65344.65 2239.697 F1,114,0.025 5.18 <0.0001

Interaction 2 1246.114 623.0572 21.35537 F2,114,0.025 3.83 <0.0001

Error 114 3326.026 29.17567

Total 119 75029.5

F-XMX F-crit F-Flow F-crit F-Inter F-crit

87.62 3.83 2240 5.18 21.26 3.83
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Size 2.219 µm

Source DF SS MS F Fcond Fcrit P

XMX 2 4915.522 2457.761 61.98263 F2,114,0.025 3.83 <0.0001

Flow 1 72518.47 72518.47 1828.854 F1,114,0.025 5.18 <0.0001

Interaction 2 2461.082 1230.541 31.0332 F2,114,0.025 3.83 <0.0001

Error 114 4520.375 39.65242

Total 119 84415.45

F-XMX F-crit F-Flow F-crit F-Inter F-crit

61.98 3.83 1829 5.18 31.03 3.83

Size 2.288 µm

Source DF SS MS F Fcond Fcrit P

XMX 2 6369.538 3184.769 61.40615 F2,114,0.025 3.83 <0.0001

Flow 1 87392.34 87392.34 1685.029 F1,114,0.025 5.18 <0.0001

Interaction 2 2827.622 1413.811 27.25997 F2,114,0.025 3.83 <0.0001

Error 114 5912.496 51.864

Total 119 102502

F-XMX F-crit F-Flow F-crit F-Inter F-crit

61.41 3.83 1685 5.18 27.26 3.83

Size 2.458 µm

Source DF SS MS F Fcond Fcrit P

XMX 2 6070.504 3035.252 31.98711 F2,114,0.025 3.83 <0.0001

Flow 1 92382.49 92382.49 973.576 F1,114,0.025 5.18 <0.0001

Interaction 2 3052.874 1526.437 16.08641 F2,114,0.025 3.83 <0.0001

Error 114 10817.44 94.88986

Total 119 112323.3

F-XMX F-crit F-Flow F-crit F-Inter F-crit

31.99 3.83 973.6 5.18 16.09 3.83

Size 2.642 µm

Source DF SS MS F Fcond Fcrit P

XMX 2 11749.55 5874.775 27.43358 F2,114,0.025 3.83 <0.0001

Flow 1 110727.2 110727.2 517.0656 F1,114,0.025 5.18 <0.0001

Interaction 2 5930.56 2965.28 13.84704 F2,114,0.025 3.83 <0.0001

Error 114 24412.57 214.1454

Total 119 152819.9

F-XMX F-crit F-Flow F-crit F-Inter F-crit

27.43 3.83 517.1 5.18 13.85 3.83
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Size 2.839 µm

Source DF SS MS F Fcond Fcrit P

XMX 2 16189.1 8094.551 25.38797 F2,114,0.025 3.83 <0.0001

Flow 1 111350.3 111350.3 349.2423 F1,114,0.025 5.18 <0.0001

Interaction 2 6025.35 3012.675 9.449037 F2,114,0.025 3.83 <0.0001

Error 114 36347.08 318.8341

Total 119 169911.9

F-XMX F-crit F-Flow F-crit F-Inter F-crit

25.39 3.83 349.2 5.18 9.45 3.83

Size 3.051µm

Source DF SS MS F Fcond Fcrit P

XMX 2 11478.8 5739.401 23.77989 F2,114,0.025 3.83 <0.0001

Flow 1 116348.3 116348.3 482.0624 F1,114,0.025 5.18 <0.0001

Interaction 2 3374.076 1687.038 6.989853 F2,114,0.025 3.83 <0.0001

Error 114 27514.5 241.3553

Total 119 158715.7

F-XMX F-crit F-Flow F-crit F-Inter F-crit

23.78 3.83 482.1 5.18 6.9 3.83

Size 3.278 µm

Source DF SS MS F Fcond Fcrit P

XMX 2 15646.88 7823.442 12.44608 F2,114,0.025 3.83 <0.0001

Flow 1 148970.5 148970.5 236.9927 F1,114,0.025 5.18 <0.0001

Interaction 2 5027.165 2513.582 3.998783 F2,114,0.025 3.83 <0.0001

Error 114 71658.89 628.5868

Total 119 241303.4

F-XMX F-crit F-Flow F-crit F-Inter F-crit

12.45 3.83 237 5.18 4 3.83

Size 3.523 µm

Source DF SS MS F Fcond Fcrit P

XMX 2 14130.38 7065.188 21.28201 F2,114,0.025 3.83 <0.0001

Flow 1 121393.2 121393.2 365.665 F1,114,0.025 5.18 <0.0001

Interaction 2 6318.894 3159.447 9.516998 F2,114,0.025 3.83 <0.0001

Error 114 37845.65 331.9794

Total 119 179688.1

F-XMX F-crit F-Flow F-crit F-Inter F-crit

21.28 3.83 365.7 5.18 9.52 3.83
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Size 3.786 µm

Source DF SS MS F Fcond Fcrit P

XMX 2 34848.04 17424.02 19.09908 F2,114,0.025 3.83 <0.0001

Flow 1 165277.7 165277.7 181.1666 F1,114,0.025 5.18 <0.0001

Interaction 2 21556.09 10778.04 11.81419 F2,114,0.025 3.83 <0.0001

Error 114 104001.8 912.2965

Total 119 325683.6

F-XMX F-crit F-Flow F-crit F-Inter F-crit

19.1 3.83 181.2 5.18 11.81 3.83

Size 4.068µm

Source DF SS MS F Fcond Fcrit P

XMX 2 25049.1 12524.55 21.36303 F2,114,0.025 3.83 <0.0001

Flow 1 132746.4 132746.4 226.4246 F1,114,0.025 5.18 <0.0001

Interaction 2 20730.16 10365.08 17.67964 F2,114,0.025 3.83 <0.0001

Error 114 66835.02 586.2721

Total 119 245360.7

F-XMX F-crit F-Flow F-crit F-Inter F-crit

21.36 3.83 226.4 5.18 17.68 3.83

Size 4.371 µm

Source DF SS MS F Fcond Fcrit P

XMX 2 18332.46 9166.229 62.67892 F2,114,0.025 3.83 <0.0001

Flow 1 100177.4 100177.4 685.016 F1,114,0.025 5.18 <0.0001

Interaction 2 19614.53 9807.267 67.06236 F2,114,0.025 3.83 <0.0001

Error 114 16671.48 146.241

Total 119 154795.9

F-XMX F-crit F-Flow F-crit F-Inter F-crit

62.68 3.83 685 5.18 67.06 3.83

Size 4.698 µm

Source DF SS MS F Fcond Fcrit P

XMX 2 11569.01 5784.504 168.4399 F2,114,0.025 3.83 <0.0001

Flow 1 63628.72 63628.72 1852.815 F1,114,0.025 5.18 <0.0001

Interaction 2 13049.29 6524.644 189.9921 F2,114,0.025 3.83 <0.0001

Error 114 3914.949 34.34165

Total 119 92161.97

F-XMX F-crit F-Flow F-crit F-Inter F-crit

168.4 3.83 1853 5.18 190 3.83
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Size 5.048 µm

Source DF SS MS F Fcond Fcrit P

XMX 2 6130.592 3065.296 72.39225 F2,114,0.025 3.83 <0.0001

Flow 1 30869.05 30869.05 729.0259 F1,114,0.025 5.18 <0.0001

Interaction 2 6472.446 3236.223 76.42899 F2,114,0.025 3.83 <0.0001

Error 114 4827.087 42.34287

Total 119 48299.17

F-XMX F-crit F-Flow F-crit F-Inter F-crit

72.39 3.83 729.02 5.18 76.43 3.83

Size 5.425 µm

Source DF SS MS F Fcond Fcrit P

XMX 2 2886.24 1443.12 49.94302 F2,114,0.025 3.83 <0.0001

Flow 1 13629.77 13629.77 471.6945 F1,114,0.025 5.18 <0.0001

Interaction 2 3175.053 1587.526 54.94059 F2,114,0.025 3.83 <0.0001

Error 114 3294.068 28.89533

Total 119 22985.13

F-XMX F-crit F-Flow F-crit F-Inter F-crit

49.94 3.83 471.7 5.18 54.94 3.83

Size 5.829 µm

Source DF SS MS F Fcond Fcrit P

XMX 2 763.5021 381.751 67.67701 F2,114,0.025 3.83 <0.0001

Flow 1 5075.803 5075.803 899.8408 F1,114,0.025 5.18 <0.0001

Interaction 2 1201.759 600.8793 106.5242 F2,114,0.025 3.83 <0.0001

Error 114 643.0488 5.640779

Total 119 7684.112

F-XMX F-crit F-Flow F-crit F-Inter F-crit

67.68 3.83 899.8 5.18 106.5 3.83

Size 6.264 µm

Source DF SS MS F Fcond Fcrit P

XMX 2 805.6712 402.8356 27.10761 F2,114,0.025 3.83 <0.0001

Flow 1 3528.821 3528.821 237.4614 F1,114,0.025 5.18 <0.0001

Interaction 2 892.3606 446.1803 30.02436 F2,114,0.025 3.83 <0.0001

Error 114 1694.11 14.86061

Total 119 6920.962

F-XMX F-crit F-Flow F-crit F-Inter F-crit

27.11 3.83 237.5 5.18 30.02 3.83
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Size 6.732 µm

Source DF SS MS F Fcond Fcrit P

XMX 2 571.1091 285.5545 51.85626 F2,114,0.025 3.83 <0.0001

Flow 1 2602.061 2602.061 472.5301 F1,114,0.025 5.18 <0.0001

Interaction 2 792.2728 396.1364 71.93775 F2,114,0.025 3.83 <0.0001

Error 114 627.7587 5.506655

Total 119 4593.201

F-XMX F-crit F-Flow F-crit F-Inter F-crit

51.86 3.83 472.5 5.18 71.94 3.83

Size 7.234 µm

Source DF SS MS F Fcond Fcrit P

XMX 2 928.0855 464.0428 26.95791 F2,114,0.025 3.83 <0.0001

Flow 1 4321.715 4321.715 251.0639 F1,114,0.025 5.18 <0.0001

Interaction 2 1048.463 524.2315 30.45449 F2,114,0.025 3.83 <0.0001

Error 114 1962.351 17.2136

Total 119 8260.615

F-XMX F-crit F-Flow F-crit F-Inter F-crit

26.96 3.83 251.1 5.18 30.45 3.83

Size 7.774 µm

Source DF SS MS F Fcond Fcrit P

XMX 2 1967.213 983.6066 21.57953 F2,114,0.025 3.83 <0.0001

Flow 1 8900.788 8900.788 195.2761 F1,114,0.025 5.18 <0.0001

Interaction 2 1664.879 832.4393 18.26305 F2,114,0.025 3.83 <0.0001

Error 114 5196.18 45.58053

Total 119 17729.06

F-XMX F-crit F-Flow F-crit F-Inter F-crit

21.58 3.83 195.3 5.18 18.26 3.83

Size 8.354 µm

Source DF SS MS F Fcond Fcrit P

XMX 2 2981.873 1490.937 18.66471 F2,114,0.025 3.83 <0.0001

Flow 1 19304.35 19304.35 241.6669 F1,114,0.025 5.18 <0.0001

Interaction 2 2660.984 1330.492 16.65614 F2,114,0.025 3.83 <0.0001

Error 114 9106.319 79.87999

Total 119 34053.53

F-XMX F-crit F-Flow F-crit F-Inter F-crit

18.66 3.83 241.67 5.18 16.66 3.83

 

 



 

115 

 

Size 8.977 µm

Source DF SS MS F Fcond Fcrit P

XMX 2 9467.699 4733.849 9.265195 F2,114,0.025 3.83 <0.0001

Flow 1 49391.81 49391.81 96.67075 F1,114,0.025 5.18 <0.0001

Interaction 2 8136.025 4068.013 7.962005 F2,114,0.025 3.83 <0.0001

Error 114 58245.81 510.9282

Total 119 125241.3

F-XMX F-crit F-Flow F-crit F-Inter F-crit

9.27 3.83 96.67 5.18 7.96 3.83

Size 9.647 µm

Source DF SS MS F Fcond Fcrit P

XMX 2 38677.95 19338.98 4.687688 F2,108,0.01 3.83 <0.0001

Flow 1 123524 123524 29.94172 F1,108,0.01 5.18 <0.0001

Interaction 2 35507.61 17753.8 4.303449 F2,108,0.01 3.83 <0.0001

Error 108 445552.1 4125.482

Total 113 643261.7

F-XMX F-crit F-Flow F-crit F-Inter F-crit

4.69 3.83 29.94 5.18 4.3 3.83

Size 10.37 µm

Source DF SS MS F Fcond Fcrit P

XMX 2 11396.91 5698.453 6.150918 F2,102,0.01 3.83 <0.0001

Flow 1 119358.3 119358.3 128.8355 F1,102,0.01 5.18 <0.0001

Interaction 2 13061.61 6530.805 7.04936 F2,102,0.01 3.83 <0.0001

Error 102 94496.82 926.4394

Total 107 238313.7

F-XMX F-crit F-Flow F-crit F-Inter F-crit

6.15 3.83 128.84 5.18 7.05 3.83  
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Appendix E: General Summary Data for Capture and Retention Efficiency ANOVA 

Evaluations 

 

 

 

Table 26: General summary data for capture and retention efficiency ANOVA evaluations

FPSL spheres Blue 0.7 µm

Anova: Single Factor Secondary Flow

SUMMARY

Groups Count Sum Average Variance

Reduced Secondary 25 4.335043 0.173402 0.018933

Standard Secondary 25 6.285117 0.251405 0.031191

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 0.076055729 1 0.076056 3.034689 0.087907 4.042652

Within Groups 1.202981436 48 0.025062

Total 1.279037164 49

FPSL spheres Blue 1.0 µm

Anova: Single Factor Secondary Flow

SUMMARY

Groups Count Sum Average Variance

Reduced Secondary 30 1.783023 0.059434 0.001218

Standard Secondary 30 3.247173 0.108239 0.008962

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 0.035728938 1 0.035729 7.019384 0.010373 4.006873

Within Groups 0.295222251 58 0.00509

Total 0.330951189 59
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FPSL spheres Green 1.9 µm

Anova: Single Factor Secondary Flow

SUMMARY

Groups Count Sum Average Variance

Reduced Secondary 30 2.8918 0.096393 0.002072

Standard Secondary 30 6.395672 0.213189 0.012906

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 0.204618681 1 0.204619 27.3232 2.45E-06 4.006873

Within Groups 0.434351907 58 0.007489

Total 0.638970589 59

FPSL spheres Green 3.1 µm

Anova: Single Factor Secondary Flow

SUMMARY

Groups Count Sum Average Variance

Reduced Secondary 30 18.70022 0.623341 0.023141

Standard Secondary 30 12.93097 0.431032 0.012185

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 0.554736987 1 0.554737 31.40648 6.06E-07 4.006873

Within Groups 1.024461939 58 0.017663

Total 1.579198925 59
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FPSL spheres Blue 0.7 µm

Anova: Single Factor Collection media

SUMMARY

Groups Count Sum Average Variance

PBS Solution 25 4.335043 0.173402 0.018933

Remel M5 25 4.558559 0.182342 0.025288

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 0.000999186 1 0.000999 0.04519 0.832555 4.042652

Within Groups 1.061312279 48 0.022111

Total 1.062311465 49

FPSL spheres Blue 1.0 µm

Anova: Single Factor Collection media

SUMMARY

Groups Count Sum Average Variance

PBS Solution 30 1.783023 0.059434 0.001218

Remel M5 30 3.035707 0.10119 0.005522

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 0.026153658 1 0.026154 7.761586 0.007199 4.006873

Within Groups 0.195438438 58 0.00337

Total 0.221592096 59
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FPSL spheres Green 1.9 µm

Anova: Single Factor Collection media

SUMMARY

Groups Count Sum Average Variance

PBS Solution 30 2.8918 0.096393 0.002072

Remel M5 30 6.519869 0.217329 0.001378

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 0.219381392 1 0.219381 127.2086 2.98E-16 4.006873

Within Groups 0.100025622 58 0.001725

Total 0.319407013 59

FPSL spheres Green 3.1 µm

Anova: Single Factor Collection media

SUMMARY

Groups Count Sum Average Variance

PBS Solution 30 18.70022 0.623341 0.023141

Remel M5 30 9.402288 0.31341 0.004017

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 1.440859069 1 1.440859 106.1096 1.02E-14 4.006873

Within Groups 0.787579998 58 0.013579

Total 2.228439066 59
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Appendix F: Overlay Plots of Concentration Ratio as a Function of Particle 

Diameter 

 

 

 

 

Figure 26: Overlay plots of CR as a function of particle diameter for XMX1 at a secondary flow rate 

of 5 lpm 
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Figure 27: Overlay plots of CR as a function of particle diameter for XMX2 at a secondary flow rate 

of 5 lpm 
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Figure 28: Overlay plots of CR as a function of particle diameter for XMX3 at a secondary flow rate 

of 5 lpm 
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Figure 29: Overlay plots of CR as a function of particle diameter for XMX1 at a secondary flow rate 

of 10 lpm 
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Figure 30: Overlay plots of CR as a function of particle diameter for XMX2 at a secondary flow rate 

of 10 lpm 
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Figure 31: Overlay plots of CR as a function of particle diameter for XMX3 at a secondary flow rate 

of 10 lpm 
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